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Abstract—This paper is intended to depict the rich behavior
even for simple protocols such as CSMA.

I. I NTRODUCTION

An ad hoc network is formed by deploying nodes that
possess self-organizing capabilities and typically consists
of several source-destination pairs communicating wirelessly
with each other in a decentralized fashion. On account of
such intricate interactions, ad hoc networks evade familiar
link-based decompositions; studying them using traditional
methods such as information theory becomes intractable and
hence has yielded little in the way of results [1]. This has
motivated researchers to turn to other branches of study, to
obtain ideas and methodologies that help better understandand
characterize the dynamical behavior of multihop networks.Of
late, statistical physics has, in particular, captured theattention
of the research community since it contains a rich collection of
mathematical tools and methodologies for studying interacting
many-particle systems [2]-[4].

II. SYSTEM MODEL

In this paper, we treat the wireless ad hoc network as an
infinite geometric graphG = (V, E), with a set ofvertices
V (representing the node locations) and a set ofedges E
(representing possible links between nodes in the network).
The vertices of the graphv ∈ V are assumed to be distributed
as amotion-invariant1 point processΦ = {xi} on the plane
R

2 with intensityλ. Without loss of generality, we takeλ = 1.
Furthermore, each node has a certain communication rangeR;
an edge (or a link) may be formed only between two nodes
that are in each other’s communication range.

In this paper, we focus on the carrier sense multiple access
(CSMA) channel access scheme, in which a node verifies the
absence of other traffic before transmitting its own packets. We
also assume that all nodes use the same wireless channel. Thus,
interference in the network permits only certain configurations
of edges: if nodesi andj communicate with each other, all the
other nodes within the communication ranges of either node
must remain silent (for example, see Fig. 1). The edges are
said to beundirected in that both nodes involved in any link
can exchange information with each other, i.e., whenever node
i can receive a packet from nodej, nodej can also do so from
nodei.

1A point process is said to be motion-invariant if its both stationary
(invariant to translations) and isotropic (invariant to rotations).
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Fig. 1. Two possible link configurations for a portion of the network (with6
nodes). Nodes in the communication range of already-communicating nodes
must remain silent. Active edges are depicted via solid lines while inactive
edges are depicted via dashed lines. The communication ranges of nodes A
and C are also shown.

Time is taken to be slotted. Att = 0, suppose that no edges
in the (network) graph are present. In every time slot, a new set
of edges may be added to the network (if they do not interfere
with other transmissions), or a pair of already-communicating
nodes may choose to end their connection. We assume that
both rates happen with given rates: each edge that is inactive
is activated (if possible) at unit rate, and each edge that is
active becomes inactive at rate1/ρ. Thus, the probability of
finding any given allowed configuration of links withN active
edges is Z−1ρN , with Z being the partition function:

Z =
∑

c∈C

ρ|c|,

wherec ∈ C is a configuration of the network with|c| active
edges.

Clearly, the largerρ is, larger the average number of edges
will be; thus the network throughput is increased, which is
desirable. However, larger theρ, the network is stuck in
a given configuration for a long period of time, which is
undesirable from a fairness-standpoint. Also, the time taken
by the network to reach steady state increases. Evidently, there
exists a tradeoff.

In this paper, we study the following problems for a CSMA
network:

1) Given a geometric graph with a certain degree distri-
bution, we evaluate the probability that an arbitrarily
chosen node is involved in an active link. We consider
the special cases of a lattice graph and a uniformly
random graph.

2) We evaluate the average throughput of the network
at steady state, and study its dependence on the link



deactivation rateρ. We then analytically derive the
optimal ρ that maximizes the fairness (will be defined
later) of the CSMA protocol.

All the results in this paper are for an “average” network,
that is the one obtained by averaging over all possible node
configurations and transmitter sets.

III. A M EAN-FIELD FORMULATION ON A ROOTED TREE

In this section, we solve the above three problems for a
rooted tree2 as a good approximation to a random graph. In the
subsequent sections, we validate the accuracy of these results
via simulations.

We consider an arbitrary node R in the network and regard
it as the root node of a tree T. Also, suppose the degree
distribution3 of this tree be given byp(k). We now identify
three possible states for the root node of T.

1) First, the root node can be involved in an active edge
with one of itsdaughters - we call this the “active” state.
Note that this state prevents the other daughter nodes
from being active.

2) Second, one (or more) of the daughter nodes is involved
in an active link - we call this the “locked” state. Under
this state, the root itself is inactive, and cannot establish
edges

3) Third, neither the root node nor any of its daughters is
involved in an active link - we call this the “free” state.

Let the partition function of this tree for the active, locked
and free states beZ1, Z2 andZ3 respectively.
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Fig. 2. An arbitrary node in the network R (designated as the root node)
with degreek = 3; It has three daughters D1, D2 and D3 with degrees3, 1
and2 respectively. We identify three possible states for it: active, locked and
free.

Next, we construct a tree of ahigher order. Accordingly,
with probability p(k), we takek such trees and join them
together to make a tree of one higher level. LetZ ′

1, Z ′
2 and

Z ′
3, respectively denote the partition functions for the larger

(constructed) tree. Then the following equalities hold:

2A tree is a connected cycle-free graph in which any two nodes are
connected by exactly one simple path. A rooted tree is a graphin which
one vertex has been designated the root; the edges which connect the root
node to its daughters have a natural orientation, towards oraway from the
root.

3The degree of a node is the number of edges emanating out of it.p(k)
simply represents the fraction of nodes with degreek

• For the root of the constructed tree to be active, one of
the k daughters must be free to be involved in an edge
with, and all other daughters must be locked or free (they
cannot be active since the parent cannot otherwise be
involved in an edge with the free daughter). So,

Z ′
1 =

∞
∑

k=1

ρkZ3(Z2 + Z3)
k−1p(k).

• For the root of the constructed tree to be locked, at least
one daughter must be active; we consider all possible
states of the daughters, and subtract off those states with
no daughters active. Accordingly,

Z ′
2 =

∞
∑

k=1

[

(Z1 + Z2 + Z3)
k − (Z2 + Z3)

k
]

p(k)

• For the constructed tree to be free, each of then daughters
of the new parent must be either locked or free (they
cannot be active otherwise the new parent cannot be free).
Thus,

Z ′
3 =

∞
∑

k=1

(Z2 + Z3)
kp(k).

In order to solve for the solution, we take that the partition
functions evaluate to the same value for the original and the
constructed trees, i.e.,Zi = Z ′

i, for i = 1, 2, 3. The values of
Z1, Z2 andZ3 may then be obtained via numerical evaluation.
The probabilities of finding any arbitrary node in the active,
locked and free states are, respectively,

Z1

Z1 + Z2 + Z3
,

Z2

Z1 + Z2 + Z3
and

Z3

Z1 + Z2 + Z3
.

Furthermore, the probability of a randomly chosen node being
involved in an active edge is simply the probability of it being
active, i.e.,Z1/(Z1 + Z2 + Z3).

In this paper, we consider two special cases: lattice networks
and Poisson networks.

A. Lattice Networks

In this subsection, we consider the problem for a lattice
network, where the coordination number for each node is the
same; we take it to be equal tok, i.e., p(k) = δ(k), where
δ(·) denotes the delta function.

In other words, we obtain

Z1 = ρkZ3(Z2 + Z3)
k−1

Z2 = (Z1 + Z2 + Z3)
k − (Z2 + Z3)

k

Z3 = (Z2 + Z3)
k. (1)

We may simplify this further by normalizing the partition
functions. Simply takeZi = Zi/(Z2 + Z3)

k, for i = 1, 2, 3:
we getZ3 = 1, while

Z1 =
ρk

(Z2 + 1)

Z2 =
(Z1 + Z2 + 1)k − (Z2 + 1)k

(Z2 + 1)k
(2)



Asymptotics:
Whenρ >> 0, it is possible to obtain closed-form analytical
solutions. Indeed, we haveZ1 ≫ Z2 ≫ Z3 = 1; so that
Z1 + Z2 + 1 ≈ Z1 andZ2 + 1 ≈ Z2. Then, (2) reduces to

Z1 ≈
ρk

(Z2)

Zk+1
2 ≈ Zk

1 (3)

This leads to the following solution:

Z1 ≈ (ρk)(k+1)/(2k+1)

Z2 ≈ (ρk)k/(2k+1)

Z3 = 1. (4)

Furthermore, the probability that a given node being involved
in an active link approximately equalsk/(2k + 1).

Special Case: k = 1 We now consider the case of a line
network.

B. Uniformly Random Networks

Lemma 3.1: Consider a PPP. The number of connected
neighbors to any node follows a homogeneous PPP with
densityλπR2.
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