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I. I NTRODUCTION

Typically, mutual information is defined and studied between just two variables. Though the approach to evaluate

bivariate mutual information is well established, several problems in multi-user information theory require the

knowledge of interaction between more than two variables. Since there exists dependency between the variables, we

cannot decipher their relationship without considering all of them at once. The seminal work on the information-

theoretic analysis of the interaction between more than two variables (or in other words, multivariate mutual

information) was first studied in [1].

If several sources transmit information to a receiver, the bivariate model with certainly fail to discriminate effects

due to uncontrolled sources from those due to random variability. We should not confuse the impairments due to

system noise with the absence of knowledge of the association between the inputs. Besides, in a practical scenario,

we don’t know in advance as to how many sources are transmitting information. By employing the multivariate

model, we can effectively measure the effects due to the various transmitting sources. It provides a simple method

for evaluating and testing dependencies in multidimensional frequency data or contingency tables.

In section II, I will summarize the theoretical development and talk about numerous properties of multivariate mutual

informations.Section III gives an introduction to total multivariate correlation analysis. Asymptotic hypothesis

testing is discussed insection IV of this report. Some applications of multivariate mutual information are mentioned

in section V. Section VI concludes the report.Section VII lists the key references used.

II. D EVELOPMENT OF THETHEORY

Consider a single-input single-output channel with a discrete inputX and outputY with probability distributions

pX(x) andpY (y) respectively. The amount of transmission betweenX andY is defined in terms of the individual

and joint entropies as

I(X;Y ) = H(X) + H(Y )−H(X, Y ) (1)

where entropy (ofX in this case) is given by

H(X) = −
∑
x∈χ

pX(x)log(pX(x))

Consider now a channel with two inputsU, V and a single outputY . This is commonly known as the two-way

channel. The mutual information between the inputs and the output of a two-way channel is written (as an extension

of (1)) as

I(U, V ;Y ) = H(U, V ) + H(Y )−H(U, V, Y ) (2)

The introduction ofV might affect the relationship betweenU andY in several ways. In order to study the effect,

the introduction ofV has on the single-input single-output channel, we will need to reduce the three-dimensional

information to two dimensions. One way to annul the effect ofV is by reducing the three dimensional equations

to two variables and writing

I(U ;Y ) = H(U) + H(Y )−H(U, Y ) (3)
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Another way in whichV could be eliminated is by taking a weighted sum (on the probability of occurrence of

that particular value ofV ) of the mutual information betweenU andY for each value ofV .

IV (U ;Y ) =
∑
v∈ϑ

pV (v)I(U ;Y |V = v) = I(U ;Y |V )

= I(U, V ;Y )− I(V ;Y )

=
(

H(U, V ) + H(Y )−H(U, V, Y )
)
−

(
H(V ) + H(Y )−H(V, Y )

)
= H(U, V )−H(U, V, Y )−H(V ) + H(V, Y ) (4)

If V has no effect on the transmission betweenU and Y , I(U ;Y ) = IV (U ;Y ), and the analysis reduces to that

for a single-input single-output channel.

In a general case however, the difference between the two is given by

I(U ;Y )− IV (U ;Y ) = H(U) + H(V ) + H(Y )− (H(U, V ) + H(V, Y ) + H(U, Y )) + H(U, V, Y ) (5)

McGill [1] defines this term as the mutual interaction between the three variablesU, V and Y and is denoted as

I(U ;V ;Y ).

The analysis above assumes that the distributions (in probability) of the inputs and output are known. In the

case that the exact values of probability distributions are not known, we could use the empirical values of entropy.

The multivariate information analysis can be analogously extended to continuously-distributed variables as well.

A. Extension to Multi-dimensional Variables

The definition of mutual information has been extended to a general case (over more than three variables) by Fano

[2] and re-formulated in a lattice-theoretic framework by Han [3]. Though each have taken different approaches

and the expressions are in terms of different entities (mutual informations in one case and entropies in the other),

they can be simplified to be the same.

Fano [2] computes the mutual information between an arbitrary number of events, as an extension to the bivariate

case as follows.

I(X1;X2) = H(X1)−H(X1|X2)

= I(X1)− I(X1|X2) (6)

The second equality is conveniently used since entropy of a variable is its self-information.

Extending to a triple product ensemble

I(X1;X2;X3) = I(X1;X2)− I(X1;X2|X3) (7)

Generalizing overN variables,

I(X1;X2; . . . ;XN ) = I(X1;X2; . . . ;XN−1)− I(X1;X2; . . . ;XN−1|XN ) (8)

As a side-equation, the self-information of a N-product ensemble can be expanded out in terms of mutual infor-

mations between the individual components as

I(X1X2 . . . XN ) =
∑

I(Xi)−
∑

I(Xi;Xj) + . . . . . . (−1)nI(X1;X2; . . . ;XN ) (9)
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The summations are taken over all combinations of subscripts.

Han [3] introduced the concept ofdifference operator to describe multiple interactions in frequency data or

contingent tables. According to him, the N-information(IN ) is the difference of the entropy function and is given

by

IN (X1;X2; . . . ;XN ) =
N∑

k=1

(−1)k−1
∑

X⊂(X1,X2,...,XN )
|X|=k

H(X) (10)

Expanding out,

IN (X1;X2; . . . XN ) = (H(X1) + H(X2) . . . + H(XN ))− . . . + . . . (−1)N−1H(X1, X2, . . . XN ) (11)

B. Properties of Multivariate Mutual Information

• Having defined multivariate mutual information, we will try to give an intuitive meaning to it. It can be

interpreted as the gain (or loss) in the information transmitted between a set of variables due additional

knowledge of an extra variable. In other words, we can think ofIN as the dependence reduction.

IN (XN ) = IN−1(XN−1)− IN−1(XN−1|XN ) (12)

whereXk = (X1;X2; . . . ;Xk)

• A surprising note to make is that, contrary to bivariate information which is always positive, multivariate

mutual information can be either positive or negative. This is seen to be possible since the effect of holding

one of the variables may increase or decrease dependence between the others. As a trivial case, consider the

situation in the trivariate product where variablesU andY are independent whenV is not known, but become

dependent givenV . For this case,I(U ;V ;Y ) is clearly negative. Han [3] has shown that mutual information

for multivariate variables need not be always positive, by expanding it in terms of parameters of probability

up to the second order.

• From Han’s expansion for the N-information (11), it is straightforward to note that multivariate mutual

information is completely symmetric with respect to its components. Hence, the N-information can be written

out in N possible ways.

• It is easy to see that the multivariate analysis is much more precise compared to the bivariate case. As an

example, consider the transmission(U, V ) → Y . In the bivariate information analysis, we would have

H(Y ) = HU (Y ) + I(U ;Y ) (13)

whereH(Y ) can be interpreted as the uncertainty in the output andHU (Y ) is the residual uncertainty in the

output after the information due to inputU is accounted for. Working on similar lines for a trivariate analysis,

we end up with

H(Y ) = HUV (Y ) + I(U, V ;Y ) (14)

Here,HUV (Y ) is the residual uncertainty which ends up being the error term. Since conditioning decreases

entropy, the analytical error is reduced for the trivariate analysis over the bivariate one. As the dimensionality
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of the system increases, we end up with a better estimate of the noise information and hence obtain a better

overall transmission. For an N-dimensional system with inputs(X1, X2, . . . , XN ) and outputY ,

H(Y ) = HX1X2...XN
(Y ) + I(X1, X2, . . . , XN ;Y ) (15)

is used to analyze the multivariate transmission of information.

• A very important property for a multivariate information quantity is the concept ofsemi-independence. A

bivariate mutual information is equal to zero if the two variables are independent. For multidimensional

variables however, independence is not the necessary condition for no-multivariate interactions . Han [3]

discusses the concept of semi-independence as a subtler extension of independence.

Let α ∈ X be a subset of the N-dimensional random vectorX. Let r(α) be defined as the number of elements

of X in the subsetα. We call a distribution semi-independent (with respect toα) if

πα ≡
∑

φ≤γ≤α

(−1)r(α)−r(γ)Pr0{α ∩ γ̄}Pr{γ} = 0 (16)

wherePr0{.} refers to an independent distribution and hence can be expanded as a product of its marginals’

probabilities.

For the bivariate case, not surprisingly, semi-independence essentially leads to independence. This is not the

case in general for higher orders. As an illustration, the semi-independence equations for a trivariate product

(πX1∩X2∩X3=0) reduces to

0 =Pr{UV Y } − Pr0{U}Pr{V Y } − Pr0{V }Pr{UY } − Pr0{Y }Pr{UV }

+ Pr0{UV }Pr{Y }+ Pr0{V Y }Pr{U}+ Pr0{V U}Pr{Y } − Pr0{UV Y } (17)

This in turn implies,

Pr{UV Y } = Pr{U}Pr{V Y }+ Pr{V }Pr{UY }+ Pr{Y }Pr{UV } − 2Pr{U}Pr{V }Pr{Y } (18)

Note that this is much stronger than the “plain” independence conditions. Infact, independence can be thought of

as a composite case of semi-independence. For independence, (16) should hold for all(α ∈ X, with r(α) ≥ 2).

• The recursive(19) andchaining(20) properties hold for the multivariate mutual information [5]. They can be

respectively stated as follows. Proofs follow immediately on expanding both sides in terms of entropy functions.

IN ((X1, X2);X3; . . . ;XN |X0) = IN (X1;X3; . . . ;XN |X0) + IN (X2;X3; . . . ;XN |X0) (19)

IN (X1;X2; . . . ;XN |X0) = IN−1(X1;X2; . . . ;XN−1|X0)− IN−1(X1;X2; . . . ;XN−1|XN , X0) (20)

III. T OTAL CORRELATION

For correlated sources of information, it will prove useful to study all the possible associations between the

system variables. However, (2) accounts for only part of the interaction and is hence incomplete in that respect. By

being able to generate all possible components of the multivariate transmission, we can examine and analyze all

possible associations. The multivariate correlation model put forth by Watanabe generates all possible combinations

of bivariate and higher order mutual informations, thus taking into account all the existing source correlations.

Watanabe [4] was the first to discuss the concept of “total correlation” in detail, though this concept had been

described earlier by McGill [1]. The definition is as follows.
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Assume a setX of random variablesX1, X2, . . . , XN , being grouped into subsetsx1, x2, . . . , xk. The correlation

existing inX is expressed as

C(X) =
k∑

i=1

H(xi)−H(X) (21)

For a givenX, C is maximized forn = k (each subset containing only one variable) and the value ofC then is

defined asTotal Correlation. According to [4], the total correlation is defined by

C(X1, X2, . . . , XN ) =
N∑

i=1

H(Xi)−H(X1, X2, . . . XN ) (22)

A bit of simplification leads to the more-important equation -

C(X1, X2, . . . , XN ) =
∑

I(Xi;Xj) +
∑

I(Xi;Xj ;Xk) + . . . + I(X1;X2; . . . ;XN ) (23)

The summation is taken over all possible combinations of subscripts. Evidently, (23) is a good method to measure

inter-variable dependencies. It can be shown that total correlation is always positive and is nullified if and only if

all the sources are independent of each other.

IV. H YPOTHESISTESTING

The maximum likelihood estimators of Shannon’s entropy and multiple mutual information are obtained by

sampling the system variables and using the resulting empirical values of probabiliy distributions. Based on this,

Han [3] shows that the asymptotic likelihood estimators are good statistics for testing semi-independence conditions

for the multivariate mutual information. Some of the key results stated in [3] are :

• Let α ∈ X, (r(α) ≥ 2) and Î(.) be the estimator ofI, then−2mÎ(α) converges in distribution asymptotically

(m →∞) to a χ2 statistic with
∏

Xα≤a Nα − 1 degrees of freedom.

Furthermore, ifα 6= β, −2mÎ(α) and−2mÎ(β) asymptotically approach independentχ2-distributions.

• −2mÎ(α) converges in distribution to a centralχ2-distribution if and only if

lim m→∞(m
1
2 πα) = 0 (24)

Using the above arguments, we can test for the trueness of the zero-hypothesis condition. As an example, consider

the case ofα = (X1 ∩X2 ∩X3) We can test for the case when the trivariate mutual information is zero.

Under the case of semi-independence, this occurs when

limm→∞(−2mÎ(X1;X2;X3)) ∼ χ2 with (N1 − 1)(N2 − 1)(N3 − 1) degrees of freedom.

If independence is assumed however, the null hypothesis is true when

limm→∞(−2mÎ(X1;X2;X3)) ∼ χ2 with (N1N2N3 − 1)− (N1 − 1)− (N2 − 1)− (N3 − 1) degrees of freedom.

A more important problem involves testing suspected information sources wherein multiple quantities can be tested

simultaneously and is discussed in detail in [1].

V. A PPLICATIONS OFMULTIPLE MUTUAL INFORMATIONS

An important application of the multivariate information is in the area of multi-user information theory. [5]

deals with calculating capacity regions in a two-way channel and concludes that the trivariate mutual information

is an important term to be considered. As mentioned earlier, it can be used to study multi-way interactions in

multidimensional frequency data or contingency tables. The usefulness of multivariate mutual information extends

beyond the realms of information theory. Ideas derived from it can be used in the area of psychology to test the

response of a human being to a certain stimulus and a pre-response and study their associations [1]. Visualization

of attribute interactions has provided an insight into the underlying structure of data on a number of domains and

has helped in building predictive models [6].
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VI. CONCLUSIONS

The concept of multivariate mutual information was introduced as an extension to the bivariate case. This

measure can be used very effectively and systematically in analyzing discrete experimental data, while the traditional

techniques of the analysis of variance cannot be employed because no numerical values are associated with the

events. Contrary to the bivariate case, multivariate information can be negative but is much stronger when used

for error analysis .The concept of independence is no longer “minimal” for the multidimensional information and

can be broken down into finer ones calledsemi-independence. In order to study all possible source interactions,

total correlation was shown to be an important, yet a tractable measure. The log-likelihood estimators of McGill’s

higher-order mutual information asymptotically tend to independentχ2-square distributions.
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