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1 Introduction

A broadcast channel (BC) is a communication channel that has one sender and two or more
receivers. The BC with two receivers is illustrated in Figure 1. The study of BCs was initialized
by Cover [1]. Simple examples of real-world BCs include TV or radio stations and lecturing
in a classroom. The basic problem that we are looking at is to find the set of simultaneously
achievable rates (R1, R2) for communication in such a channel. In this report, we discuss some
of the progress towards finding the capacity region for the BC. Rather surprisingly, the capacity
region for a general BC is still unknown and remains an open problem !
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Figure 1: BC with two receivers. (W1,W2) is the transmitted message and Ŵ1 and Ŵ2 are the
decoder estimates.

2 Definitions for a Broadcast Channel

The formal definitions for the BC with two receivers are as follows.

Definition A BC consists of an input alphabet X and two output alphabets Y1 and Y2 and a
probability transition function p(yn

1 , yn
2 |xn). The BC is said to be memoryless if p(yn

1 , yn
2 |xn) =∏n

i=1 p(y1i, y2i|xi).

Definition A (d2nR1e, d2nR2e, n) code for a BC with independent information consists of an
encoder,

f : ({1, 2, . . . , d2nR1e} × {1, 2, . . . , d2nR2e}) → X n, (1)

and two decoders
gi : Yn

i → {1, 2, . . . , d2nRie}, i = 1, 2. (2)

Definition The average probability of error is defined as the probability that either of the
decoded messages is not equal to the corresponding transmitted message, i.e.,

P (n)
e = Pr

[
g1(Y n

1 ) 6= W1 or g2(Y n
2 ) 6= W2

]
, (3)

where (W1,W2) are assumed to be uniformly distributed over d2nR1e × d2nR2e.

Definition A rate pair (R1, R2) is said to be achievable for the BC if there exists a sequence
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of (d2nR1e, d2nR2e, n) codes with P
(n)
e → 0 as n →∞1.

Definition The capacity region of the BC is the closure of the set of achievable rates.

3 Degraded Broadcast Channel

It is often the case in practice that one receiver may experience a better channel than the other,
in a certain sense. Such a channel is termed a degraded BC (Figure 2). This is one of the few
classes of channels for which the capacity region is established.

Definition A memoryless BC is said to be physically degraded if p(y1, y2|x) = p(y1|x)p(y2|y1)
i.e., X ↔ Y1 ↔ Y2.

Y1p(y1|x) p(y2|y1) Y2U X

Figure 2: Degraded BC with auxiliary input U.

3.1 Capacity region for the Degraded Broadcast Channel

Theorem 3.1. The capacity region for sending independent information over the degraded BC
X ↔ Y1 ↔ Y2 is the closure of all (R1, R2) satisfying

R1 < I(X; Y1|U),
R2 < I(U ; Y2) (4)

for some joint distribution p(u)p(x|u)p(y1, y2|x), where the auxiliary random variable U has
cardinality bounded by |U| ≤ min{|X |, |Y1|, |Y2|}.
Proof. The proof hinges on the idea of superposition coding for the BC [2]. The main idea is to
superimpose the message intended for the better receiver on the poorer receiver. The auxiliary
random variable U serves as a “cloud center” distinguishable to both receivers Y1 and Y2. Each
cloud consists of d2nR1e “satellite” codewords distinguishable only by receiver Y1.

Outline of achievability:

• Fix p(u) and p(x|u).

• Random codebook generation: Generate d2nR2e independent codewords of length n,
un(w2), w2 ∈ {1, 2, . . . , d2nR2e}, according to

∏n
i=1 p(ui). For each codeword un(w2), gen-

erate d2nR1e independent codewords xn(w1, w2) according to
∏n

i=1 p(xi|ui(w2)). Thus,
un(i) plays the role of the cloud center understandable to both Y1 and Y2, while xn(i, j)
is the jth satellite codeword in the ith cloud.

• Encoding: To send the pair (W1,W2), send the corresponding codeword xn(W1, W2).
1Under certain circumstances, the sender might be interested in transmitting common information to

both receivers. A (d2nR0e, d2nR1e, d2nR2e, n) code for a BC with independent information consists of an en-
coder f : ({1, 2, . . . , d2nR0e} × {1, 2, . . . , d2nR1e} × {1, 2, . . . , d2nR2e}) → Xn and two decoders gi : Yn

i →
{1, 2, . . . , d2nR0e} × {1, 2, . . . , d2nRie}, i = 1, 2, where R0 is the transmission rate for the common information.
The definitions for the average probability of error and the rate triple are similar to those defined above.

2



• Decoding : The decoders perform joint typicality decoding based on the received sequences
yn
1 and yn

2 . Receiver 2 determines the ˆ̂
W2 such that (un( ˆ̂

W2), yn
2 ) ∈ A

(n)
ε . If there are

none or more than one such, an error is declared. Receiver 1 looks for the (Ŵ1, Ŵ2) such
that (un(Ŵ2), xn(Ŵ1, Ŵ2), yn

1 ) ∈ A
(n)
ε . If there are none or more than one such, an error

is declared.

• The remainder of the proof involves showing that the probability of error goes to 0 at
both the receivers as long as the rates satisfy (4), and can be looked up in [2].

Outline of converse:
The proof of the converse is provided in [2]. Note that (W1,W2) ↔ Xn(W1,W2) ↔ Y n

1 ↔
Y n

2 . The key idea in the converse is to define the auxiliary random variable U as a function of
outputs up to the present time. The basic steps in the proof use Fano’s inequality and the fact
that conditioning does not increase entropy.

Remarks:

• By superimposing high-rate information on low-rate information, we can transmit at
superior rates compared to time-sharing or maximin procedures [1].

• The bound on the cardinality of U is discussed in [3].

• The proof can use a “subtract-off” or conditioning idea for the better receiver Y1.

• The cloud center is not explicitly sent.

• For a general BC, the set of rates
[
R1 < I(X; Y1|U), R2 < min{I(U ; Y1), I(U ; Y2)}

]
represents an achievable region.

• For BCs, the capacity region depends only on the conditional marginal distributions. To
see this, define events E1 = {g1(Y n

1 ) 6= W1}, E2 = {g2(Y n
2 ) 6= W2} and E = {g1(Y n

1 ) 6=
W1 or g2(Y n

2 ) 6= W2}. Hence, Pr(E1) ≤ Pr(E) and Pr(E1) ≤ Pr(E). But Pr(E) ≤
Pr(E1) + Pr(E2) by the union bound. Thus, Pr(E) → 0 ⇔ Pr(E1) → 0 and Pr(E2) → 0.
Hence, capacity regions found for a particular channel are the same for a larger class of
channels having the same conditional marginal distributions.

3.2 The Degraded Gaussian Broadcast Channel

As an extension of the above theorem, consider the degraded Gaussian BC with

Y1 = X + Z1

Y2 = X + Z2 = Y1 + Z ′2, (5)

where Z1 ∼ N (0, N1) and Z ′2 ∼ N (0, N2 − N1). Here, we have assumed N1 < N2. Let P be
the average input power constraint.
The capacity region of this channel is given by

R1 < C

(
αP

N1

)

R2 < C

(
(1− α)P
αP + N2

)
, (6)

where α may be arbitrarily chosen in [0, 1] and C(x) := 1
2 log(1 + x).

Remarks:

• The worse decoder treats the satellite codeword as noise.
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• The better decoder can decode Y2’s codeword since it operates at a lower noise level.

• The key ideas in the converse are identification of the superposition variable and the
entropy power inequality [4].

• All scalar Gaussian BCs are equivalent to this degraded type, and hence the capacity
region for the Gaussian BC is as defined above.

4 Capacity Region Bounds for General Broadcast Channels

The capacity region for a general BC has still not been established except for some special
cases [5]; however, several inner and outer bounds to the capacity region have been studied.
In this section, we discuss the tightest two such bounds in existing literature - first, the inner
bound established by Marton [5] in 1979 and later, the outer bound by Nair and El Gamal [6]
published recently at ISIT 2006.

4.1 Marton’s Inner Bound

Theorem 4.1. Let

R0 = {(R1, R2) : R1, R2 ≥ 0,

R1 < I(U ; Y1),
R2 < I(V ; Y2),

R1 + R2 < I(U ; Y1) + I(V ;Y2)− I(U ; V )} (7)

for some p(u, v, x) on U × V × X . Then any rate pair (R1, R2) ∈ R0 is achievable for the
discrete memoryless BC (X , p(y1, y2|x),Y1 × Y2)

Proof. Marton has provided a rather cumbersome proof [5, Theorem 2], which is simplified in
[7, 8].
Outline of achievability:

• Fix p(u, v), p(x|u, v). The channel p(y1, y2|x) is given, and the idea is to send the auxillary
variables u to y1 and v to y2.

• Random Coding: Generate 2nI(U ;Y1) typical u’s ∼ p(u). Generate 2nI(V ;Y2) typical
v’s ∼ p(v). Randomly throw the u’s into d2nR1e bins and v’s into d2nR2e bins. For
each product bin, find a jointly typical (un, vn) pair. Generate xn(un, vn) according to∏n

k=1 p(xk|uk, vk).

• Encoding: To send i to Y1 and j to y2, send xn(un, vn), which is generated by (un, vn) in
bin (i, j).

• Decoding: Receiver Y1 finds the un that is jointly typical with yn
1 and receiver Y2 finds

vn typical with yn
2 .

Remarks:

• This achievability region is the capacity region if the channel has one deterministic com-
ponent [5, Theorem 4].
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4.2 Deterministic Broadcast Channels

A direct application of Marton’s theorem is to compute the achievable region of a deterministic
BC. It is shown in [9] that this is the capacity region as well.

Theorem 4.2. The capacity region of the deterministic memoryless BC with y1 = f1(x) and
y2 = f2(x), is given by the closure of the rate pairs (R1, R2) satisfying

R1 < H(Y1)
R2 < H(Y2)

R1 + R2 < H(Y1, Y2) (8)

Remarks:

• This can be obtained from the previous theorem by taking U = Y1 and V = Y2.

• The capacity region has a complementary relationship with the Slepian Wolf data com-
presssion region (Figure 3.)

Compression Region

Deterministic BC
Capacity Region

Slepian Wolf Data

H(Y2|Y1)

H(Y2)

H(Y1)
R1

R2

H(Y1|Y2)

Figure 3: The capacity region for the deterministic BC and the Slepian Wolf data compression
region are complementary.

4.3 Nair and Gamal’s Outer Bound

This improves upon the earlier bound by Körner and Marton [5, Theorem 5].

Theorem 4.3. The set of rate pairs (R1, R2) satisfying

R1 < I(U ; Y1)
R2 < I(V, Y2)

R1 + R2 < min{I(U ; Y1) + I(V ; Y2|U), I(V ; Y2) + I(U ;Y1|V )} (9)

for some choice of joint distributions p(u, v, x) = p(u, v)p(x|u, v) constitutes an outer bound to
the capacity region for the discrete memoryless BC. Also, the auxiliary random variables U and
V have cardinalitites bounded by |U| ≤ |X |+ 2 and |V| ≤ |X |+ 2.

Remarks

• The converse proof is given in [6].

• The capacity region for the deterministic BC is obtained by simply taking U = Y1 and
V = Y2.
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5 Gaussian Vector Broadcast Channels

When a BC is extended to a multiple-input, multiple-output (MIMO)2 system (having coop-
erating transmitters), unfortunately, it loses its degradedness in most cases and we see that
superposition coding or successive decoding is no longer capacity-achieving. Not to our sur-
prise, the capacity of a general MIMO BC channel remains unsolved. However, for the Gaussian
vector BC, the sum capacity region has been characterized [10, 11] and recently, Weingarten et
al. [12] have established the entire capacity region.

The general form of a discrete time Gaussian MIMO system is given by yi = Hxi + zi, ı =
1, . . . , n where xi ∈ Ct is the transmitted vector at time i, zi, yi ∈ Cr are the noise and
corresponding output vectors respectively and H ∈ Cr×t is the channel matrix where hk,l

denotes the complex channel gain from transmitter l to receiver k. The noise vector zi has i.i.d
values with zk,i = N (0, 1), k = 1, . . . , r and i = 1 . . . , n. H is deterministic, fixed and known
to both transmittes and receivers. Such a channel in which the transmitters can cooperate and
receivers are constrained to decode independently forms a Gaussian MIMO BC.

Caire and Shamai [10] characterized the sum capacity of a BC with two receivers, each
equipped with a single antenna, by applying the dirty paper result [13] at the transmitter. This
was extended to multiple transmitters and receivers by Yu and Cioffi [11].

5.1 The Dirty Paper region

The capacity of a single-user memoryless channel PY |X,S with input X, output Y , and interfer-
ence S, where the interference sequence is noncausally known to the transmitter and unknown
to the receiver, is given in terms of the auxiliary random variable U by

sup
PX,U,S

{I(U ; Y )− I(U ; S)} (10)

where the supremum is over all PU,X,S(x|u, s) = 1{x = f(u, s)}PU |S(u|s)PS(s), where PS(s) is
given and f(u, s) is some deterministic function.

In the Gaussian case where Y = X + S + Z, the interference S and the noise Z being
Gaussian, and X the input under some power constraint E[X2] ≤ P , [13] says that the capacity
of the channel is the same as if interference was not present if Z and S are independent.

This can be applied for the MIMO Gaussian BC when choosing codewords for different
receivers. The source can order the users and encode each user by treating the previous users
as noncausally known interference. This idea of successive encoding results in what is known as
the dirty paper region, which is an achievable region for the Gaussian MIMO BC. The optimality
of the dirty paper region has been shown in [10, 11] only for the sum rate. Weingarten et al.
have recently shown [12] that dirty paper region achieves capacity for the Gaussian MIMO BC.
They also show that superposition coding is optimal for the degraded vector BC while dirty
paper coding is optimal for the nondegraded case.

Remarks:

• The approach to compute the dirty paper region is in general complicated and Vishwanath
et al. [14] suggest using the duality property of MAC and BC as a simpler procedure to
obtain the achievability region.

• Yu and Cioffi [11] show that the sum capacity is a saddle point of a Gaussian mutual
information game where a signal player chooses a trasmit covariance matrix to maximize
the mutual information and a fictitious noise player chooses a noise correlation to minimize
the mutual information.

2We use ’MIMO’ and ’vector’ interchangeably.
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