Deep Networks-based
Video Classification Methods



Papers for discussion

* Andrej Karpathy et al., Large-scale Video
Classification with Convolutional Neural
Networks

e Jeff Donahue et al., Long-term Recurrent
Convolutional Networks for Visual Recognition
and Description

* Joe Yue-Hei Ng et al., Beyond Short Snippets:
Deep Networks for Video Classification



PAPER

Other video classification codes: Caffe C3D

Comparison points

KARPATHY ET AL. DONAHUE ET AL. NG ET AL.

STANFORD UNIVERSITY

CVPR* 2014

CNN only

Training: 5-20 fps
Testing: 20 frames

60.9% on Sports -1M
65.4% on UCF-101

NO

Authors created the sports

1M dataset

UNIVERSITY OF
CALIFORNIA, BERKELEY

CVPR 2015

CNN + LSTM (Long-term
recurrent convolutional
nets (LRCNs))

Testing: 16 frames

82.92% on UCF-101
YES
(BVLC Caffe)

Can also be used for
image/video description

GOOGLE DEEP MIND
CVPR 2015

CNN + Feature
Pooling/LSTM

Training: 1fps
Testing: 30/120 frames
73.1% on Sports-1M
88.6% on UCF-101
NO

Work emanated from a
Google internship

All the primary authors are currently still Ph.D. students !

Other 3D convolution libraries: conv3D (Theano), volumetric convolution (Torch)

*Computer Vision and Pattern Recognition



Popular video datasets

 UCF 101: 13320 videos in 101 classes, separated into 5 broad
groups: Human-Object interaction, Body-Motion, Human-
Human interaction, Playing Instruments and Sports

* Sports 1M: 1 million YouTube videos belonging to a taxonomy
of 487 classes of sports; 1000-3000 videos per category.

* CCV:9317 videos and 20 categories related to consumer
video (wedding dance, basketball, graduation, birthday, etc)

* UT-interaction: continuous execution of 6 classes of human-
human interaction; 20 video sequences each around 1 minute
long — This is similar to the surveillance video we may capture

e HMDB-51: 7000 clips in 51 action classes related to human
motion.

Popular image datasets: MNIST, CIFAR-10, CIFAR-100, ImageNet



Convolutional Neural Networks (CNNs
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Long Short Term Memory (LSTM)

The LSTM is a recurrent neural network that uses memory cells to store, modify, and

access internal state, allowing it to better discover long-range temporal relationships
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Karpathy et al., Large-scale Video Classification
with Convolutional Neural Networks

Multi-resolution architecture for addressing computational efficiency
1. Context stream — down-sample the frame at half the original spatial
resolution
2. Fovea stream — sample only the center portion of the video at full
resolution
Apparently, the fovea stream learns grayscale, high-frequency features while
the context stream models lower frequencies and colors.
Temporal information is handled via different time fusion techniques (late, early,
slow)
Video is chopped into 5 clips per second for full-resolution, and 20 clips per
second for multi-resolution.
Input image resolution is 170 x 170. They are randomly flipped horizontally with
50% probability.
Training is performed on the Sports 1M-dataset (50 random frames per video);
testing is done on both the Sports-1M as well as UCF-101 datasets. Training data
labeling is automatically done based on the text metadata describing the video.



Methods for fusing information over
the temporal domain
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Red, green and blue layers indicate convolution, normalization and pooling
layers respectively. There are also two yellow fully connected layers.



Karpathy et al., Large-scale Video Classification
with Convolutional Neural Networks
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C(d, f, s) indicates a convolutional layer with d filters of spatial size f xf, applied to the input with
stride s. Pooling is performed across 2x2 regions. Activations via rectified linear units (ReLUs).



Karpathy et al., Large-scale Video Classification
with Convolutional Neural Networks

Model Clip Hit@1 Video Hit@1 Video Hit@5 : .
= = — — e Single-frame techniques
eature lS[l‘.}g['.'-ll’IIS + Neura et - . P . .
Single-Frame 41.1 59.3 [71°\ W'Fh hit@5 perform
Single-Frame + Multires 424 60.0 78.5 quite well!
Single-Frame Fovea Only 30.0 49.9 72.8 e Slow fusion performs
Single-Frame Context Only 38.1 56.0 77.2
2 the best amongst
Early Fusion 38.9 57.7 T6.8 _
Late Fusion 40.7 3 78.7 temporal fusion
Slow Fusion 41.9 60.9 80.2 methods
CNN Average (Single+Early+Late+5low) 41.4 63.9 824

Performance on the sports 1M dataset

Model 3-fold Accuracy * Train from scratch fails to perform well,
Soomro et al [22] 43.9% likely due to overfitting!

Feature Histograms + Neural Net 0% . . .
Train from seratch G139 * Taking a balanced approach (fine-tuning
Fine-tune top layer A 1% the top 3 layers) helps the most in terms
Fine-tune top 3 layers @ of performance

Fine-tune all layers 62.2%

* 3-fold accuracy used for cross-validation
Performance on the UCF-101 dataset using slow fusion



CNN for Single Frame vs Video

Single Frame Results (less accurate)
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Donahue et al., Long-term Recurrent Convolutional
Networks for Visual Recognition and Description

The CNN used is a hybrid of three historic models, and is
pre-trained on the 1.2M image ILSVRC-2012 dataset.

— T frames are inputs to T CNNS (T=16 in implementation)
LSTM: A single-layer LSTM with 256 hidden units.

Two variants of LSTMs tried
— LRCN —fc6: LSTM is placed after the first fully connected layer
— LRCN-fc7: LSTM is placed after the second fully connected layer

Input frame is sized 224x224

Training is performed with a video of 16 clips. Both training
and testing are performed on the UCF-101 dataset.

Optical flow and RGB inputs are considered



Donahue et al., Long-term Recurrent Convolutional
Networks for Visual Recognition and Description

Activity Recognition
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Donahue et al., Long-term Recurrent Convolutional
Networks for Visual Recognition and Description

Input Type | Weighted Average
Model RGB Flow | Y/2,1/2  1/3.2/3
Single frame 65.40 53.20 — —
Single frame (ave.) | 69.00 7220 | 75.71 79.04
LRCN-fcg 71.12 7695 | 8197 82.92
LRCN-fcr 70.68 69.36 — —

* |[nputs may be either RGB or optical flow.

* The best performance is about 83%



Ng et al., Beyond Short Snippets: Deep
Networks for Video Classification

* Only one frame per second
* Motion information is lost
e But explicit motion information is available in the form of optical flow
 Two CNN architectures are used to process individual video frames: AlexNet and
GooglLeNet.
e AlexNet: 220x220 image as input, followed by CNNs of size 11, 9 and 5 and
two fully connected layers with 4096 RelLUs
e GoogleNet: 220 x 220 image as input. This image is then passed through
multiple Inception modules, each of which applies, in parallel, 1x1, 3x3, 5x5
convolution, and max-pooling operations and concatenates the resulting
filters. Finally, the activations are average-pooled and output as a 1000-
dimensional vector. This network is 22 layers deep.
* Temporal information is handled via different pooling techniques (convolution, late,
slow, local and time-domain convolution) or LSTMs (with 512 memory cells each)
* Training is performed on the Sports 1M-dataset (30-120 frames per video); testing
is done on both the Sports-1M (30 frames at 1fps) as well as UCF-101 (30 frames at
6fps) datasets.



Ng et al., Beyond Short Snippets: Deep
Networks for Video Classification

(c) Slow Pooling (d) Local Pooling

—

L 1
III I CNN followed by 5 LSTM layers

() Time-Domain Convolution

Feature pooling architectures The stacked convolutional layers are
denoted by “C”. Blue, green, yellow and orange rectangles
represent max-pooling, time-domain convolutional, fully-
connected and softmax layers respectively.



Ng et al., Beyond Short Snippets: Deep
Networks for Video Classification
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Ng et al., Beyond Short Snippets: Deep
Networks for Video Classification

| Method | ClipHit@1 | Hit@1 | Hit@5 |
Conv Pooling 68.7 71.1 89.3
Late Pooling 65.1 67.5 87.2
Slow Pooling 67.1 69.7 88.4
Local Pooling 68.1 70.4 88.9
Time-Domain | ¢, 672 | 872
Convolution

| Method | Hit@1 | Hit@5 |
AlexNet single frame 63.6 84.7
GoogLeNet single frame 64.9 86.6
LSTM + AlexNet (fc) 62.7 83.6
LSTM + GoogLeNet (fc) 67.5 87.1
Conv pooling + AlexNet 70.4 89.0
Conv pooling + GoogLeNet | 717 9.4

| Method | Hit@1 | Hit@5

LSTM on Optical Flow 59.7 81.4
LSTM on Raw Frames 72.1 90.6
LSTM on Raw Frames + @ 90.5
LSTM on Optical Flow ’
30 frame Optical Flow 44.5 70.4
Conv Pooling on Raw Frames 71.7 90.4
Conv Pooling on Raw Frames +

Conv Pooling on Optical Flow 71.8 904

| Method | Frame Rate | 3-fold Accuracy (%) |
Single Frame Model MN/A 73.3
- , _ 30 fps 80.8
Conv Pooling (30 frames) 6 fips 220
_ . _ 30 fps 826
Conv Pooling (120 frames) 6 fips 23 6
Method 3-fold Accu-
racy (%)
Improved Dense Trajectories (IDTF)s [27] 879
Slow Fusion CNN [14] 65.4
Single Frame CNN Model (Images) [1Y] 73.0
Single Frame CNN Model (Optical Flow) [1Y] 739
Two-Stream CNN (Optical Flow + Image Frames, | 86.9
Averaging) [1V]
Two-Stream CNN (Optical Flow + Image Frames, | 88.0
SVM Fusion) [1Y]
Our Single Frame Model 733
Conv Pooling of Image Frames + Optical Flow (30 | 87.6
Frames)
Conv Pooling of Image Frames + Optical Flow | 88.2
(120 Frames) o
LS5TM with 30 Frame Unroll (Optical Flow + Im- {\H\.—D
age Frames)

Sports 1M dataset performance:

Pooling, CNN architecture and
optical flow comparisons

UCF-101 dataset performance:
Optical flow helps improve performance

here but not in the sports 1M

dataset

Improved performance due to video better
centered, less shaky, and better trimmed



Conclusions

CNNs capture spatial correlation, pooling methods or LSTMs capture temporal
correlation. Hence, combine the two for video analytics.

— We could also have two CNNs, one for stitching in the spatial domain, and another in the
temporal domain

Single frame CNNs can themselves do quite a decent job (around 80% prediction
rate with hit@5)

— But this probably requires the image of object to be centered across the frame and very little
noise

Issue 1: Over-fitting
— Need to re-train depending on the application?
Issue 2: Computational time
— Training time may take a few weeks or even months
— Reduce no of frames per second/down-sample frames
— GPUs are essential for training
Fine tuning higher layers is critical in making the network specific to the
application. There is perhaps no need to re-train all the layers.

— Or we can simply do ‘transfer learning’ (use logistic regression/random forest-type models on
the already learnt features).



Other papers

* Simoyan et al., Two-stream convolutional

networks for action recognition in videos, NIPS
2014



