Deep Networks-based Video Classification Methods

A literature overview

Papers for discussion

- Andrej Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks
- Jeff Donahue et al., Long-term Recurrent Convolutional Networks for Visual Recognition and Description
- Joe Yue-Hei Ng et al., Beyond Short Snippets: Deep Networks for Video Classification

Comparison points

PAPER	KARPATHY ET AL.	DONAHUE ET AL.	NG ET AL.	
Affiliation	STANFORD UNIVERSITY	UNIVERSITY OF CALIFORNIA, BERKELEY	GOOGLE DEEP MIND	
inProceedings	CVPR* 2014	CVPR 2015	CVPR 2015	
Architecture	CNN only	CNN + LSTM (Long-term recurrent convolutional nets (LRCNs))	CNN + Feature Pooling/LSTM	
Input processing rate	Training: 5-20 fps Testing: 20 frames	Testing: 16 frames	Training: 1fps Testing: 30/120 frames	
Accuracy	60.9% on Sports -1M 65.4% on UCF-101	82.92% on UCF-101	73.1% on Sports-1M 88.6% on UCF-101	
Code open-sourced?	NO	YES (BVLC Caffe)	NO	
Tidbit	Authors created the sports 1M dataset	Can also be used for image/video description	Work emanated from a Google internship	
	All the primary authors are currently still Ph.D. students !			

Other video classification codes: Caffe C3D

Other 3D convolution libraries: conv3D (Theano), volumetric convolution (Torch)

*Computer Vision and Pattern Recognition

Popular video datasets

- UCF 101: 13320 videos in 101 classes, separated into 5 broad groups: Human-Object interaction, Body-Motion, Human-Human interaction, Playing Instruments and Sports
- **Sports 1M**: 1 million YouTube videos belonging to a taxonomy of 487 classes of sports; 1000-3000 videos per category.
- **CCV**: 9317 videos and 20 categories related to consumer video (wedding dance, basketball, graduation, birthday, etc)
- **UT-interaction**: continuous execution of 6 classes of humanhuman interaction; 20 video sequences each around 1 minute long – This is similar to the surveillance video we may capture
- **HMDB-51:** 7000 clips in 51 action classes related to human motion.

Popular image datasets: MNIST, CIFAR-10, CIFAR-100, ImageNet

Convolutional Neural Networks (CNNs)

input neurons	first hidden layer

input neurons

000000000000000000000000000000000000000	first hidden layer
000000000000000000000000000000000000000	;oooooooooooooooooooooooooooo
000000000000000000000000000000000000000	000000000000000000000000000000000000000
0 00000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	

Long Short Term Memory (LSTM)

The LSTM is a recurrent neural network that uses memory cells to store, modify, and access internal state, allowing it to better discover long-range temporal relationships

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks

- Multi-resolution architecture for addressing computational efficiency
 - 1. Context stream down-sample the frame at half the original spatial resolution
 - 2. Fovea stream sample only the center portion of the video at full resolution

Apparently, the fovea stream learns grayscale, high-frequency features while the context stream models lower frequencies and colors.

- Temporal information is handled via different time fusion techniques (late, early, slow)
- Video is chopped into 5 clips per second for full-resolution, and 20 clips per second for multi-resolution.
- Input image resolution is 170 x 170. They are randomly flipped horizontally with 50% probability.
- Training is performed on the Sports 1M-dataset (50 random frames per video); testing is done on both the Sports-1M as well as UCF-101 datasets. Training data labeling is automatically done based on the text metadata describing the video.

Methods for fusing information over the temporal domain

Red, green and blue layers indicate convolution, normalization and pooling layers respectively. There are also two yellow fully connected layers.

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks

C(96, 11, 3)-N-P-C(256, 5, 1)-N-P-C(384, 3, 1)- C(384, 3, 1)-C(256, 3, 1)-P-FC(4096)-FC(4096) C(d, f, s) indicates a convolutional layer with d filters of spatial size f ×f, applied to the input with stride s. Pooling is performed across 2x2 regions. Activations via rectified linear units (ReLUs).

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks

Model	Clip Hit@1	Video Hit@1	Video Hit@5
Feature Histograms + Neural Net	-	55.3	Ċ
Single-Frame	41.1	59.3	77.7
Single-Frame + Multires	42.4	60.0	78.5
Single-Frame Fovea Only	30.0	49.9	72.8
Single-Frame Context Only	38.1	56.0	77.2
Early Fusion	38.9	57.7	76.8
Late Fusion	40.7	59.3	78.7
Slow Fusion	41.9	60.9	80.2
CNN Average (Single+Early+Late+Slow)	41.4	63.9	82.4

- Single-frame techniques with hit@5 perform quite well!
- Slow fusion performs the best amongst temporal fusion methods

Performance on the sports 1M dataset

Model	3-fold Accuracy
Soomro et al [22]	43.9%
Feature Histograms + Neural Net	59.0%
Train from scratch	41.3%
Fine-tune top layer	64.1%
Fine-tune top 3 layers	65.4%
Fine-tune all layers	62.2%

- Train from scratch fails to perform well, likely due to overfitting!
- Taking a balanced approach (fine-tuning the top 3 layers) helps the most in terms of performance
- 3-fold accuracy used for cross-validation

Performance on the UCF-101 dataset using slow fusion

CNN for Single Frame vs Video

Motion Aware Results (more accurate)

lacklining

single frame predictions: rope climbing beach tennis rings (gymnastics) inline speed skating modern pentathlon motion-aware predictions: slacklining rope climbing beach handball footvolley streetball

short track motor racing single frame predictions: short track motor racing touring car racing drifting (motorsport) motorcycle racing time attack motion-aware predictions: dirt track racing drifting (motorsport) stock car racing rallycross auto racing

Green indicates correct tag, Top five tags shown in the order of reducing confidence

Donahue et al., Long-term Recurrent Convolutional Networks for Visual Recognition and Description

- The CNN used is a hybrid of three historic models, and is pre-trained on the 1.2M image ILSVRC-2012 dataset.
 T frames are inputs to T CNNS (T=16 in implementation)
- LSTM: A single-layer LSTM with 256 hidden units.
- Two variants of LSTMs tried
 - LRCN fc6: LSTM is placed after the first fully connected layer
 - LRCN-fc7: LSTM is placed after the second fully connected layer
- Input frame is sized 224x224
- Training is performed with a video of 16 clips. Both training and testing are performed on the UCF-101 dataset.
- Optical flow and RGB inputs are considered

Donahue et al., Long-term Recurrent Convolutional Networks for Visual Recognition and Description

Donahue et al., Long-term Recurrent Convolutional Networks for Visual Recognition and Description

	Input Type		Weighted Average	
Model	RGB	Flow	1/2, 1/2	1/3, 2/3
Single frame	65.40	53.20	_	_
Single frame (ave.)	69.00	72.20	75.71	79.04
LRCN-fc ₆	71.12	76.95	81.97	82.92
LRCN-fc7	70.68	69.36	-	-

- Inputs may be either RGB or optical flow.
- The best performance is about 83%

- Only one frame per second
 - Motion information is lost
 - But explicit motion information is available in the form of optical flow
- Two CNN architectures are used to process individual video frames: AlexNet and GoogLeNet.
 - AlexNet: 220x220 image as input, followed by CNNs of size 11, 9 and 5 and two fully connected layers with 4096 ReLUs
 - GoogleNet: 220 × 220 image as input. This image is then passed through multiple Inception modules, each of which applies, in parallel, 1×1, 3×3, 5×5 convolution, and max-pooling operations and concatenates the resulting filters. Finally, the activations are average-pooled and output as a 1000dimensional vector. This network is 22 layers deep.
- Temporal information is handled via different pooling techniques (convolution, late, slow, local and time-domain convolution) or LSTMs (with 512 memory cells each)
- Training is performed on the Sports 1M-dataset (30-120 frames per video); testing is done on both the Sports-1M (30 frames at 1fps) as well as UCF-101 (30 frames at 6fps) datasets.

(e) Time-Domain Convolution

Feature pooling architectures The stacked convolutional layers are denoted by "C". Blue, green, yellow and orange rectangles represent max-pooling, time-domain convolutional, fullyconnected and softmax layers respectively.

CNN followed by 5 LSTM layers

Method	Clip Hit@1	Hit@1	Hit@5		
Conv Pooling	68.7	71.1	89.3		
Late Pooling	65.1	67.5	87.2		
Slow Pooling	67.1	69.7	88.4		
Local Pooling	68.1	70.4	88.9		
Time-Domain	64.2	67.2	87.2		
Convolution	04.2	07.2	07.2		
		II: OI	II'- OF		
Method		Hit@1	Hit@5		
AlexNet single frame		63.6	84.7		
GoogLeNet single frame		64.9	86.6		
LSTM + AlexN	let (fc)	62.7	83.6		
LSTM + GoogLeNet (fc)		67.5	87.1		
Conv pooling + AlexNet		70.4	89.0		
Conv pooling + GoogLeNet		71.7	90.4		
Method		Hit@1	Hit@5		
LSTM on Optica	59.7	81.4			
LSTM on Raw F	72.1	90.6			
LSTM on Raw F	72.1	00.5			
LSTM on Optica	13.1	90.5			
30 frame Optical Flow		44.5	70.4		
Conv Pooling on	71.7	90.4			
Conv Pooling on	71.8	90.4			
Conv Pooling on	/1.0	0.4			

Sports 1M dataset performance: Pooling, CNN architecture and optical flow comparisons

Method	Frame Rate	3-fold Accuracy (%		
Single Frame Model	N/A	73.3		
Comy Booling (20 frames)	30 fps		80.8	
Conv Fooling (50 frames)	6 fps		82.0	
Conv Pooling (120 frames)	30 fps		82.6	
Conv roomig (120 frames)	6 fps	82.6		
Method			3-fold	Accu-
			racy (%)
Improved Dense Trajectories (IDTF)s [23]			87.9	
Slow Fusion CNN [14]	65.4			
Single Frame CNN Model (I	73.0			
Single Frame CNN Model (Optical Flow) [19]				
Two-Stream CNN (Optical Flow + Image Frames,				
Averaging) [19]				
Two-Stream CNN (Optical Flow + Image Frames,				
SVM Fusion) [19]				
Our Single Frame Model			73.3	
Conv Pooling of Image Frames + Optical Flow (30			87.6	
Frames)				
Conv Pooling of Image Frames + Optical Flow				

(120 Frames) LSTM with 30 Frame Unroll (Optical Flow + Image Frames)

UCF-101 dataset performance:

Optical flow helps improve performance here but not in the sports 1M dataset Improved performance due to video better centered, less shaky, and better trimmed

Conclusions

- CNNs capture spatial correlation, pooling methods or LSTMs capture temporal correlation. Hence, combine the two for video analytics.
 - We could also have two CNNs, one for stitching in the spatial domain, and another in the temporal domain
- Single frame CNNs can themselves do quite a decent job (around 80% prediction rate with hit@5)
 - But this probably requires the image of object to be centered across the frame and very little noise
- Issue 1: Over-fitting
 - Need to re-train depending on the application?
- Issue 2: Computational time
 - Training time may take a few weeks or even months
 - Reduce no of frames per second/down-sample frames
 - GPUs are essential for training
- Fine tuning higher layers is critical in making the network specific to the application. There is perhaps no need to re-train all the layers.
 - Or we can simply do 'transfer learning' (use logistic regression/random forest-type models on the already learnt features).

Other papers

 Simoyan et al., Two-stream convolutional networks for action recognition in videos, NIPS 2014