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Abstract

In wireless channels, the path loss exponent (PLE) has agsiropact on the quality of links, and hence,
it needs to be accurately estimated for the efficient desighaperation of wireless networks. In this paper, we
address the problem of PLE estimation in large wireless odsy which is relevant to several important issues in
networked communications such as localization, enerfgiefit routing, and channel access. We consider a large
ad hoc network where nodes are distributed as a homogene@s®R point process on the plane and the channels
are subject to Nakagamir fading. We propose and discuss three distributed algostfon estimating the PLE
under these settings which explicitly take into account ititerference in the network. In addition, we provide
simulation results to demonstrate the performance of therdhms and quantify the estimation errors. We also
describe how to estimate the PLE accurately even in netwaitksspatially varying PLEs and more general node

distributions.

I. INTRODUCTION

The wireless channel presents a formidable challenge aslauméor reliable high-rate communication.
It is responsible not only for the attenuation of the propedaignal but also causes unpredictable spatial
and temporal variations in this loss due to user movementcdages in the environment. In order
to capture all these effects, the path loss for RF signaloimsneonly represented as the product of a
deterministic distance component (large-scale path lasd)a randomly-varying component (small-scale

fading) [1]. The large-scale path loss model assumes teattteived signal strength falls off with distance
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according to a power law, at a rate termed the path loss expdReE). Fading describes the deviations
of the received signal strength from the power-law decay tushadowing and the constructive and
destructive addition of its multipath components. While $mall-scale fading behavior of the wireless
channel can be well-represented using stochastic pragej&eit is critical to accurately estimate the

PLE for the efficient design and operation of wireless neksor

This estimation problem is non-trivial even for a singleklgtue to the existence of multipath propagation
and thermal noise. For large wireless networks withoutstfucture, the problem is further complicated
due to the following reasons: First, the achievable peréoroe of a typical ad hoc or sensor network
is not only susceptible to noise and fading, but also to fatence due to the presence of simultaneous
transmitters. Dealing with fading and interference simugétously is a major difficulty in the estimation
problem. Second, the distances between nodes themsedvesigect to uncertainty. Often, the distribution
of the underlying point process can be statistically deteeoh, but precise locations of the nodes are harder
to measure. In such cases, we will need to consider the fadidglistance ambiguities jointly, i.e., define
a spatial point process that incorporates both.

In this paper, we present three distributed algorithms touetely estimate the channel's PLE for
large wireless networks with uniformly randomly distribdtnodes in the presence of fading, noise and
interference, based solely on received signal strengttsunements. We also provide simulation results to
illustrate the performance of the methods and study thenasiton error. Additionally, we briefly describe
how to accurately estimate the PLE in environments withiajpatarying PLE values and for more general
node distributions. The remainder of the paper is strudtasefollows. Sectionlll provides a few examples
to motivate the importance of knowing the PLE for the analyand design of communication systems
and discusses the prior work on the estimation problem.i@eltlll presents the system and channel
models. Sectiof IV describes three distributed algoritfionsPLE estimation, each based on a specific
network characteristic, and provides the mean squared @M8E) performance of the algorithms based
on simulation. SectionV suggests two simple ways to imptbeeaccuracy of the estimation algorithms.
Sectior V] briefly discusses the sensitivity of the algarithto variations in the system model, and Section
VITlconcludes the paper.

While modeling wireless channels, the small-scale fadimplaude is often assumed to be distributed as a RayleighiaRior a
Nakagamim random variable.



II. MOTIVATION AND RELATED WORK
A. Motivation

In this section, we illustrate the importance of knowing BIeE for efficient design and operation of
wireless networks. Though it is often assumed in analysisd@sign problems that the value of the PLE
is known a priori, this is not true in practice, and hence,Rh& needs to be accurately estimated during
the network initialization phase.

The PLE estimation problem is closely related to that of liaagion, which is an integral component of
network self-configuration. When bestowed with the abiiityletect their positions, sensor nodes deployed
in an ad hoc fashion can support a rich set of geographicalpre protocols and accurately report the
regions of detected events. Detailed knowledge of the nddeations is also needed for performing
energy-efficient routing of packets in the network. An intpat class of localization algorithms is based
on received signal strength (RSS) measurements [3], [4]itbneeds accurate estimates of the PLE
to perform well. Another fundamental issue in sensor netaas the sensing problem that deals with
how well a target area or a phenomenon can be monitored. iBudetwork characteristics such as
connectivity is important for such applications and regsiiaccurate estimates of the PLE [5], [6].

A good knowledge of the PLE is also essential for designirigient networks. In [7], the authors
discuss capacity results for TDMA-based linear networks simow that the optimum number of hops to
achieve a desired end-to-end rate strongly depends on tGeRelr example, when the desired (bandwidth-
normalized) spectral efficiency exceeds the PLE, singfethamsmission outperforms multihopping. Many
of the existing results on capacity scaling for large ad hetworks strongly depend on the PLE as
well. With v being the PLE, the best known achievability result [8] ®tdteat for a network having
uniformly randomly located nodes on the plane, the capattles as>~7/? for 2 < v < 3 and asy/n
for v > 3. Depending on the value of the PLE, appropriate routingesgias (nearest-neighbor hopping
or hierarchical cooperative schemes) may be implementedach the maximally achievable scaling of
the system throughput.

Energy consumption in wireless networks is a crucial iskaeeeds to be addressed at all the layers of
the communication system. In [9], the author analyzes tle@ggnconsumed for several routing strategies
that employ hops of different lengths in a large network wittiformly randomly distributed nodes. Using
the results therein, we demonstrate that a good knowleddgleeoPLE is necessary for efficient routing.

Consider the following two simple schemes where commuioas assumed to occur only in a sector



¢ around the source-destination axis.
1) Route across nearest neighbor hops in a sectgri.e., the next-hop node is the nearest neighbor
that lies within+¢/2 of the axis to the destination.
2) Transmit directly to the/'th nearest neighbor in the sector Here,n’ is chosen in a way that the
expected progress is the same for both schemes.
From [9], the ratio of the consumed energies for the two sd@®ei® obtained as

B n*T(1+~/2)T(n)
E,  T(W++v/2)

wherelI'(.) represents the gamma function arid= Z(n*—1)+1. Observe that the PLE plays an important
role in determining energy-efficient routing strategiesphrticular, wheny is small, scheme 2 consumes
less energy while relaying is more beneficial at high PLE eslu

The performance of contention-based systems such asishdtteHA is very sensitive to the contention
probability p, hence it is critical to choose the optimal operating poithe system. The value of the
contention parameter is determined based on various nsadiveh as maximizing the network throughput
[10] or optimizing the spatial density of progress [11, EGr6]. These quantities also greatly depend on

the PLE, and therefore the optimal value of the contentiab@bility can be chosen only after estimating

v.

B. Review of Literature

In this section, we survey some of the existing PLE estinmati@thods in the literature. Most authors
have assumed a simplified channel model consisting only @rgeiscale path loss component and a
shadowing counterpart, but we are not aware of any prior vibek has considered fading, and, most
importantly, interference in the system model. Therefonech of the past work on PLE prediction has
focused mainly on RSS-based localization techniques. Mexygnoring interference in the system model
is not realistic, in particular since PLE estimation neexlbé performed before the network is organized.

Estimation based on a known internode distance probahiiigyribution is discussed in [12]. The
authors assume that the distance distributigiir) between neighboring nodes is known or can be
determined easily. With the transmit power equalAgdBm] (assume this is a constant for all nodes),

the theoretic mean RSS averaged over neighboring node (raitee absence of interference) I3 =
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PEr[R™]. E.g., if the internodal distance distribution is (i.i.(ﬂ?}ayleig?H with meanR,, then we have

P = Py(2Ry//7) ' T'(1—~/2). The value ofy is estimated by equating to the empirical mean value
of the RSS measured over several node pairs.

If the nearest-neighbor distribution is in a complicatethfahat is not integrable, an idea similar to the
guantile-quantile plot can be used [12]. For cases wheraghtmot be possible to obtain the neighbor
distance distribution, the idea of estimatingising the concept of the Cayley-Menger determinant or the
pattern matching technique [12] is useful.

In [13], the authors consider a network where the path lossd®n a few low-cost sensors is measured
and stored for future use. They then propose an algorithtrethaloys interpolation techniques to estimate
the path loss between a sensor and any arbitrary point ingtveork. In [14], a PLE estimator based on the
method of least squares is discussed and used in the desagneificient handover algorithm. However,
as described eatrlier, the situation is completely diffex@nen interference and fading are considered and
these purely RSS-based estimators cannot be used. Alse,afdhe prior estimation algorithms works

in a fully distributed nature.

[1l. SYSTEM MODEL

We consider an infinite planar ad hoc network, where nodesliatebuted as a homogeneous Poisson
point process (PPR) of density\. Therefore, the number of points lying in a Borel $&tdenoted by
®(B), is Poisson-distributed with meax»(B), wherew,(-) is the two-dimensional Lebesgue measure
(area). Also, the number of points in disjoint sets are irtelent random variables. The PPP model for
the node distribution is ubiquitously used and may be jestiby claiming that sensor nodes are dropped
from an aircraft in large numbers; for mobile ad hoc netwpiksnay be argued that terminals move
independently of each other.

The attenuation in the channel is modeled as the producteofatiye-scale path loss with exponent
and a flat block-fading component. Also, the noise is takelbet&dWGN with mean powelN,. To obtain
concrete results, the fading amplitudeis taken to be Nakagamix distributed. Lettingn = 1 results in
the well-known case of Rayleigh fading, while lower and lEgkalues ofmn signify stronger and weaker
fading scenarios respectively. The case of no fading is heddey settingm — oo. When dealing with

2When nodes are arranged uniformly randomly on the planend¢lagest-neighbor distance is Rayleigh distributed [9].



signal powers, we use the power fading variable denoted by /2. The pdf of G is given by [15]

— m—1 _ >
pa(x) F(m)x exp(—mx), m>1/2, Q)
and its moments are
m _ L(m+mn) .
Eq|G"] = T (m) necRT. (2)

Note thatG captures the random deviation from the large-scale pa#) tbssEq[G] = 1.

Since the PLE estimation is usually performed during nekwioitialization, it is reasonable to assume
that the transmissions in the system during this phase areoudinated. Therefore, we take the channel
access scheme to be ALOHA. We shall see in Setion V that éweher MAC schemes were available,
ALOHA is a good choice of MAC protocol since employing it mmimizes the spatio-temporal correlations
in the interference, which helps improve the estimationuemcy. We denote the ALOHA contention
probability by a constanp. Therefore, nodes independently decide to transmit withbaility p or
remain idle with probabilityl — p in any time slal. Consequently, the set of transmitters at any given
moment forms a PPR’ of density \p. Also, since there is no information available for power tcol

we assume that all the transmit powers are equal to unityn,Tite interference at nodeis given by

L1><y> = Z GzyHZ - yH—’Y’

zed’
whereG,, is the fading gain of the channel fromto y, and|| - || denotes the Euclidean distance.

We define the communication from the transmitter: 4o the receiver ap to be successful if and only
if the signal-to-noise and interference ratio (SINR)yais larger than a threshol®, which depends on
the modulation and coding scheme and the receiver struditméhematically speaking, an outage at a
receiver aty occurs if and only if

Gaylle —yl| ™7
<0, ()
No + I<I>’\{x}<y>

whereIsn () (y) denotes the interference in the networkyaénd = is the desired transmitter.

IV. PATH LOSSEXPONENT ESTIMATION

This section describes three fully distributed algorithims PLE estimation, each based on a certain
network characteristic, and provides simulation resuftghe estimation errors. The first algorithm uses

3The beginning and ending times of a slot is based on the haiinode’s clock cycle. Thus, time slots across differantes need not
(and in general, will not) be synchronized. We will only assuthat the duration of the slots are the same.



the mean interference value and assumes the network densitybe known. Algorithms 2 and 3 are
based on outage probabilities and the network’s connéctproperties, respectively, and do not require
knowledge of)\ or the Nakagami parametet.

The PLE estimation problem is essentially tackled by eqgathe empirical (observed) values of the
aforementioned network characteristics to the theongtiestablished ones to obtain the estiméateln
each time slot, nodes either transmit (wopor listen to record measurements (Wip- p). After obtaining
the required measurement values over several time sl@fdiimation process can be performed at each
node in a distributed fashion.

The simulation results provided in this paper are obtair@dguMATLAB. To analyze the mean error
performance of the algorithms, we use estimates resultmmm £0000 different realizations of the PPP.
Each PPP is generated by distributing a Poisson number onfspaniformly randomly in &0 x 50 square
with densityl. To avoid border effects, we use the measurements recotdkrd aode lying closest to the
center of the network. The accuracy of the algorithms is attarized using the relative MSE, defined as

E[(§ - 7)2} /7. The contention probability is taken to Ipe= 0.05 in each case and N, = —25 dBm.

A. Algorithm 1: Estimation Using the Mean Interference

In many situations, the network density is a design paranaetd hence known. In other cases, it is
possible to estimate the density (see [16, Sec. 2.7] andetheences therein for a survey of the estimation
methods for a PPP). This section discusses a PLE estimdgonthm that uses the knowledge of the
density \.

A simple technique to infer the PLE when the Nakagami parameter is unknown is based on the
mean interference. According to this method, nodes simpidnto record the strength of the received
power that they observe and use it to estimat®Ve first state existing theoretic results and subsequently
describe how the estimation can be performed in practice.

For the PPP network running the slotted ALOHA protocol, #flecumulant of the interference resulting
from transmitters in an annulus of inner radidsand outer radiug3 around the receiver node is given
by [17]

B* v — A2

Cy, = 2m\pEq[G"] Gy : (4)

“This value ofp was found to be suitable to obtain several quasi-differeatizations of the PPB’ and helped obtain accurate estimates
in a reasonable number of time slots.



In particular, we can consider only the cage- 2 (a fair assumption in a wireless scenario) and et

be large (considering the entire network) so that the metarference is

A%
MIZCH:QW)\]?V_Z, ©))

which is independent of:. Consequently, the mean received power is= 1.; + Ny. Note from [5) that
the mean received power is infinite fer = 0. However, the large-scale path loss model is valid only
in the far-field of the antenna and breaks down for very smiatlhdces. Denote the (known) near-field
radius by a positive constant,.
The algorithm based on the interference moments matcheshberved and theoretic values of the
mean received power and is described as follows.
« Record the strengths of the received pow#ss. .., Ry at any arbitrarily chosen node during
time slots and evaluate the empirical mean received powey) S | R;.
. Equate the empirical mean to the theoretical valug.pf(with A = A;) and estimatey using a
look-up table and the known values pf N, and (known or estimated density)
Fig.[ depicts the relative MSE values of the estimated RLf&r differenty and N values. The estimates
are seen to be accurate over a wide range of PLE values, inyartwhen the PLE is small. Furthermore,
the MSE is seen to converge within just abaao0 time slots, i.e., in a few seconds or less, depending
on the hardware used.
The estimatey can be used along with to also estimate the Nakagami parameterindeed, from

(), the variance of the interference is

2= (4 =21\ 1+i AT (6)
0 = L2 = 2TAD m) oy =2

Since noise and interference are independent of each otieeyariance of the received powerdg =
o? + 0%, whereo?, denotes the (known) variance of the noise power. Therefor&stimate of the fading
parametern is obtained by inverting (6) as

. ((o—%—am—n _1>‘ | @)

TApALT

B. Algorithm 2: Estimation Based on Virtual Outage Probabilities

We now describe an estimation method based on outage plitibaltihat requires the knowledge of

neither the network density nor the Nakagami fading param#&ve first review some theoretical results



and then present a practical scheme to estimate

In [11], it is shown that when the signal power is exponehtidistributed, the success probability
ps across any link in the Poisson network is equal to the prodfidhe Laplace transforms of noise
and interference. For the rest of this subsection, we assbatehe system is interference-limited, i.e.,
Ny < 1. In particular, when the transceiver pair separation isygnive can express the probability of a
successful transmission [17] as

ps & exp(—c;0%7), (8)

where

To estimatey, the nodes are required to measure the SIR values duringatdiree slots and use it

to compute the empirical success probability, which matcte theoretical valud(8). However, it is
impractical to place transmitters for each receiver noderevla SIR measurement is taken. Instead, nodes
can simple measure the received powers, and compute theafyiSIRs taking the signal powers to be
independent realizations of an exponential random vagiakiis algorithm is implemented at each node

as follows.

« Record the values of the received powdis ..., Ry at the node duringV time slots. Take the
signal powerssS;, 1 < i < N, to be N independent realizations of an exponential random vaiabl
with unit mean. Using the value$;/R;, Vi, a histogram of the observed SIR values is obtained.

. Evaluate the empirical success probabilities at two difiethresholds, i.e., compute,; = (1/N) Zf\il 1¢s,/mi>
j=1,2.

« Match the empirically observed values with the theoretigdlies: From[(8), we obtain(p; 1)/ In(ps2) =
(@1/@2)2/7. Solving for v yields the estimate

2 ln(@l/@g)

Y= o) In(pea)) ®)

which is independent of both andm.
Fig.[2 plots the relative MSE of for ©, = 10 dB and©, = 0 dB for differenty and N values. We see
that the error is small when the PLE is small, but increasdarger values of the PLE.

*When the transmitter node is unit distance away from theivec@ode, the PLE will not affect the received power strandtis case
is particularly helpful for the implementation of this PLEtnation algorithm.
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Fig.[3 plots the relative MSE of versusm for various PLE values computed at the end\of= 10000
time slots. Note that the algorithm performs more accuyaelower values ofn. We provide an intuitive
explanation for this behavior in Sectién I\M-D.

We have seen that can be estimated by measuring the outages at two specifiesvafuthe threshold.
We now describe how to improve the estimation accuracy, ectst of additional complexity. The idea
is to find the best fit of the empirical distribution of the SkRthe theoretical value given bl (8). Denote
the observed values of the SIRs duriNgtime slots byg,, ..., Gy. Let the empirical complementary cdf
of the SIR at3; be F(j3;). We use the Kolmogorov-Smirnov statistic [18] to define tlowdness-of-fit.
Accordingly, the estimate of the PLE is given by

A = arg min max <F(ﬁl) — exp(—cﬂf”)) . (10)

v 1<i<N

The distribution (or curve) fitting method works effectiyddecause of the difference in the behavior of
the outage probability with respect to the paramefers: and~. Specifically, consider the exponent in
@), and letf(©) = ¢;0%7. In the plot of f(O©) versusO, a change in the value of or m only scales
the functionf, while changingy skews it. Thus, the value of that fits the distribution can be efficiently
estimated by fitting the curve, even wharandm are unknown.

Fig.[4 plots the relative MSE of versus the number of time slots, for= 3,4. To find the solution
to (I0), we used the in-built function 'fminsearch’ in MATIBA The dashed lines indicate the MSE for
the case where the estimation is performed using only twoifip@alues of the threshold (as inl (9)) and
depict the improvement in performance obtained by emptpgistribution fitting. Evidently, wher or

m (or both) is known, the estimation accuracy can be improvethér.

C. Algorithm 3: Estimation Based on the Cardinality of the Transmitting Set

Without the knowledge of the network density or the Nakagami parameten, the PLE can be
accurately estimated also based on the connectivity ptiepeof the network. In this subsection, we
derive the average number of nodes that are connected tdoaragr node in the network and describe
a PLE estimation algorithm based on our analysis.

For any nodey, define itstransmitting set 7'(y) as the group of transmitting nodes whom it receives a
(correctly decodable) packet from, in a given time slot. 8@rmally, for receiver, transmitter node:

is in its transmitting set if they are connected, i.e., thBIFSlat y is greater than a certain threshaid
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Note that this set changes from time slot to time slot. Alstertbat for© = 0 dB, the condition for a
transceiver pair to be connected is that the received sgjrahgth is greater than the interference power.
Thus, for© > 1, the cardinality of the transmitting sef;(y)|, can at most be one, and that transmitter is
the one with the best channel to the receiver. The estimatgurithm is based on matching the theoretical
and empirical values of the mean number of elements in tmsndting set. The following proposition
forms the basis of this estimation scheme.

Proposition 4.1: Under the conditions ofn € N and Ny < I, the mean cardinality of the transmitting
set of any arbitrary node in the networky, is proportional to®—2/7.

Proof: For Ny < I, the success probability for a transceiver pair at an anlyitdistanceR units

apart can be expressed as

ps(R) = E;[Pr(GR >10 | I)]

() mm .
E; {/I@RW F(m)x Yexp(—mx)dz
ﬁ/o ['(m, 2O R"m)p;(z)dz, (11)

_
12

—
=
=

where (a) is obtained using[{1) an¢h) using the definition of the upper incomplete gamma futhion
I'(-,-). Here,p;(z) denotes the pdf of the interference.
The expressions can be further simplified whens an integer. Forn € N, we have

-1

3

1
ps(R) @ k:_/ (zOR'm)* exp(—rO R m)p;(x)dx
k=0
L (—ORYm)k dF
® TWMI( 5)|s=ervm) (12)
k=0 '

where M;(s) is the moment generating function (MGF) &éf Here, (a) is obtained from the series
expansion of the upper incomplete gamma function @ndusing the definition of the MGF. When the
node distribution is Poisson, we have the following clofath expression for the MGF [17, Eqn. 20]:
M;(s) = exp(—=A\prEg[G* T (1 — 2/~)s%/7), for v > 2.

Using this, we get

B , m—1 02R2 k
ps(R) = exp(—c2R7) Z ) m €N (13)

k=0
wherecy, = A\prEq(G¥T(1 — 2/9)(Om)*7 = ¢, (Om)?/7.

®Mathematica: Gammala,z]
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Now, we consider an arbitrary receiver nogeshift it to the origin and analyze the transmitting set
for this “typical” node. Consider a disk of radiuscentered at the origin. Lel’ denote the event that
an arbitrarily chosen transmitter inside this disk igjia transmitting set. Since the nodes in the disk are

uniformly randomly distributed, we have

Pr(E) = ER[ps(R) | R]
B @ mzzl exp( 02r 202 k rdr
N 7m2 — 0%
1= 29 F * exp(—cor?) 2k
= @Z i 7]{:! 2rdr
m—1 k 2
1 2 1 [
@ —— - —/ t* exp(—t)dt
k! J,

1 T2 /2 “1
(O — <_) — (P(k+1) = T(k+1,ca%),
k=0

where(a) is obtained by a simple change of variableg{ = t) and (b) using the definition of the upper
incomplete gamma function.

Denote the mean number of transmitters in the disk of radiby N, = A\pwa®. Then, we can write

Nr =E|T(y)] = llm N, Pr(FE)
- rEQ- =l
I o \7 2 1_%
2 r(m+ ) 2-Her a9

Here, (a) is obtained using the fact théin, ... I'(a, z) = 0 and(b) using the definition of, and [2). m
The analytical value of the mean cardinality of the transngtset whenmn € N can be evaluated from
(@4). 1t is plotted in Fig[h for two different thresholds and= {2.5,3,3.5,4,4,5}. Interestingly, since
[(2+2/7y) = (1+2/9)(1+2/7), the values ofV; at m = 1 andm = 2 are the same.

From [13), we see thaV; is inversely proportional t®?/". Therefore, whenn is a positive integer,
the ratio of the mean cardinalities of the transmitting deiv different threshold values is independent
of m. This forms the main idea behind the estimation algorithna &we surmise that this behavior holds
at arbitrarym € R*.

The algorithm based on the cardinality of the transmittirggks at each node in the network as follows.
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« For a known threshold valu®;, > 1, setNy;(i) = 1 in time sloti, 1 <i < N, if the condition SIR
> ©; holds, i.e., the node can correctly decode a packet/gnd(i) = 0 otherwise. Compute the
empirical mean cardinality averaged over several timessiot; = (1/N) SN, Ny (i).

. Likewise, evaluateVr, = (1/N) Zf\il Nr (i) for another threshold valu€), > 1.

. Equate the mean cardinalities of the transmitting set ferttho different threshold values to obtain
Nri/Nro = (©,/6,)*7 . Following this,~ is estimated as

2 ln(@g/@l)

IH(NTJ/NTQ). (15)

g =

Thus, this algorithm requires the knowledge of neithanor m.

Since the performance of this algorithm depends on knowihgtlaer packets are correctly decoded
or not, it is advisable to keep time slots across differertasosynchronized so that the SIR at any node
remains the same throughout a slot of time (or the packesitnegsion time). However, this assumption
may be relaxed by making the duration of a time slot largetiveao the packet transmission time, and
setting N1 (i) = 1 even if at least one of the received packets is decoded sfatigs

Fig. [ plots the empirical relative MSE &f for algorithm 3 versus the number of time sla¥s for
various PLE values, while Figl 7 shows the relative MSEyofersusm for N = 10000. Unlike Algo.

1 and 2, the relative MSE decreases witlin this case. Also, we observe that the MSE is low at lower

values ofm and increases witm.

D. Discussion

The problem of PLE estimation is fundamental and non-tkiEach of the three algorithms we have
described is fully distributed and can be performed at eamterin the network. There is no need for
coordination among nodes, and they do not require any irdbom on the locations of nodes in the
network or the Nakagami parameter. Simulation results validate that the estimates are quiteirate
over a large range of the system parametend m. Based on the relative MSE values, we conclude
that at low values ofy, Algo. 1 performs the best (though it requires the netwonksitg to be known),
while when~ is high, Algo. 3 is preferred. If time slots across nodes asesynchronized, Algo. 2 is
useful. Also, the convergence of the MSE is seen to occurinvibbout 2000 time slots for all of the
algorithms. For time slots of the order of milliseconds,akes only a few seconds for the PLE to be

estimated in practice.
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Each of the estimation algorithms works by equating emaligcmeasured values of certain network
characteristics with their corresponding theoreticalugal There is a caveat though, that needs to be
addressed. The theoretical results used are for the “awereigvork” (they are obtained by averaging over
all possible realizations of the transmitter locations ahdnnel states). However, in practice we have
only a single realization of the node distribution at hankug, even though the set of transmitters and the
fading component of the channel change independently ferdiit slots, the node locations remain the
same and the interference at the nodes are spatio-tempooatelated [19]. This means that in general,
the empirically computed values only approximate the tégoresults and the estimates are biased. The
bias (and the MSE) can be significantly lowered if the nodes tecord measurements have access to
several independent realizations of the PPP and we usedt#aslater to improve the estimation accuracy
(see Sectiof V). The ALOHA MAC scheme turns out to be paréidylhelpful in this regard.

The fact that nodes have access to just a single realizatitred®PP also intuitively explains why the
relative MSE decreases with for Algorithms 2 and 3. Indeed, the variance@fis 1 + 1/m (obtained
from (@)), which increases with decreasimg Considering the fading and link distance ambiguitiestjgjn
a lowerm corresponds to having greater randomness in the locatitimeafiodes (upon taking the fading
component to be a constant). Thus, this condition is egemtdb nodes being able to see several diverse

realizations of the process over different time slots, aatl$ to a lower MSE.

V. IMPROVING THE ESTIMATION ACCURACY

As mentioned, the values measured at the nodes match thetibabvalues more closely if each node
has access to a larger number of realizations of the proEessinately, in the scenario where nodes are
distributed as a homogeneous PPP, we can employ two simple based on this principle to improve
the estimation accuracy. We describe them in this sectidna#so provide simulation results on the MSE

that validate the significant improvement in the perforneantthe estimation algorithms.

A. Mobile nodes

Assume that nodes are mobile and that in each time slot, thely enove with a constant velocity
v in a randomly chosen directiop, that is uniformly distributed irf0, 27) (random waypoint mobility
model). Since the nodes move independently, each nodewvelssardifferent PPP realization (with the
same density) in each different time slot. By recording raeaments over different time slots,can be

estimated more accurately. Fid. 8 plots the relative MSE fifr each of the three methods when= 0.1
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m/slot. The dashed lines represent the relative MSE wherilityab not considered, and are also plotted

to depict the improvement in performance.

B. Coordinating Nodes

Alternatively, if nodes in a neighborhood can coordinate axchange information, then their mea-
surements can be combined to yield a more accurate estirh#te &#LE. Since the homogeneous PPP
is ergodic, for any measurable function defineddanits statistical average (obtained over different PPP
realizations), and its spatial average (obtained oveewdifit nodes in a single realization) are equal almost
everywhere in the limit [16, pp. 172]. Based on this resiig éstimation process can be performed more
accurately on a single realization of the network by collecthe recorded measurements over several
nodes.

Fig.[9 plots the relative MSE of the estimate versus the numobe&oordinating noded<. From the
figure, we see that the MSE sharply reduces with lafgerAs mentioned earlier, with'’ — oo, the
relative MSE— 0. To obtain the simulation results, we used the collectivesneesments recorded at
the K nodes located closest to the network center adver 2000 slots. The estimates are based on the

averaged value of these measurements.

VI. SENSITIVITY OF THE ALGORITHMS

We have formalized our algorithms based on the homogeneB&srRodel and a spatially invariant
path loss assumption. However, in reality, it is more likéigat the nodal arrangement is not completely
spatially random but takes on other forms such as beingesktor more regular. Also, the PLE value
changes depending on the terrain type and the environmeoriditions and hence cannot always be taken
to be a constant over the entire network. In this section, nieflp comment on the sensitivity of our
algorithms to these issues and illustrate how the PLE maycberately estimated well even when some

assumptions are relaxed.

A. Spatial Invariance of the PLE

In this subsection, we address the case where the PLE is abdl§pinvariant. For illustration purposes,
we consider part of a network consisting of a square subme§iof sidel/ centered at the origin with PLE

~1, and an outer region B of PLE, as shown in Fig_10. To model the path loss, we use the molpies|
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piecewise linear model [1]. Accordingly, for transmittesden; and receiver node., the path loss over
a distance’; +r, (see Fig[ID) igry/ro) =" - (1+1ry/r1) 772, for r1 > rq, wherer, is the near-field radius.

Under this setting, we study the error performance of Alitponi 3 for different locations along the
axis. Fig.11 plots the relative MSE 6fwhen! = 10 with ; = 4 and~, = 3 and shows that Algorithm
3, by itself, works quite accurately even in a network witlotdifferent values ofy. The same qualitative
behavior can be expected from Algorithms 1 and 2.

For cases where the PLE varies more rapidly or when the nktwgosparse, nodes can coordinate
to obtain better estimates. To accurately do this, it is foklip nodes have a general idea of tiRLE
coherence length, i.e., the distance over which the PLE can be assumed to lagiamnt. This may vary
from about a mile if the network terrain changes rapidly taragch as hundreds of miles if the network
extends from an urban to a suburban to a rural area. It canswemasl that the network operator has a
general idea about variations in the PLE and based on thesnétwork is divided into sub-areas with
constant PLEs, each of which is estimated separately. Ftannoe, if the PLE coherence lengthds
each node can estimate the PLE based on measurements cebgrdther nodes that lie inside a disk of

radiusd around it.

B. Other Point Process Models

Even though all the algorithms are formulated for the casth@fhomogeneous PPP, they may also be
used to estimate the PLE in different spatial point procedtems. The idea is to artificially make the
arrangement of nodes appear more “spatially random”. Tars lie effectively performed upon simply
employing randomized power control, wherein instead ofifigaall the nodes transmit at unit power, we
let nodes transmit at power levels drawn from a certainifigtion. In fact, with independent thinning and
appropriate rescaling, every point process is transformexda stationary PPP (in the limjit — 0) [21,
Prop. 11.3.1]. A good choice for the distribution of transmpower levels is the exponential distribution
since it is also the maximum non-negative entropy distridouf{20], i.e., among all continuous pdfs
supported or0, co) with a given mean, the exponential distribution has the maxn entropy.

Upon employing power control, the algorithms designed lier PPP case may also be used to estimate
the PLE for other point processes. Higl 12 plots the reld@&E values for Algorithm 3 for three non-PPP
network models: the regular lattice grid, the Matern hardegmrocess and the Thomas cluster process
(for details on these point processes, please refer to,[&6}) shows that the algorithm’s performance is

quite accurate when power control (based on the exponelisi@ibution) is employed. Similar qualitative
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behavior may be expected of Algorithms 2 and 3. Using poweatrobimproves the estimation accuracy

even in the case that the nodal arrangement is a PPP sindpstriealize diverse realizations of the PPP.

VIl. SUMMARY

In wireless systems, knowing the value of the PLE is crifithls an accurate estimate is essential
for their analysis and design. We offer a novel look at theiesef PLE estimation in a large wireless
network, by taking into account Nakagami-fading, the underlying node distribution and the network
interference. We assume that nodes are arranged as a haoogeRPP on the plane and the MAC
scheme is slotted ALOHA (at least during the PLE estimatibage). For such a system, we present
three distributed algorithms for PLE estimation, and padevsimulation results to quantify the estimation
errors. By incorporating mobility or coordination amongdes, the accuracy of the estimators can be
greatly improved. The proposed algorithms perform wellhewdaen the PLE is spatially varying, and upon
employing power control, in networks with more general ndagributions. To the best of our knowledge,
they are the first fully distributed PLE estimation algomith in wireless networks with interference. This

work is extensible to one- or three-dimensional networka straightforward manner.
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Fig. 1. Relative MSE ofy versus the number of time slots for different PLE values, tfog estimation method based on the mean
interference. The error is small, in particular when the R&Emall.
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Fig. 2. Relative MSE ofy versus the number of time slots for the estimation methoédas virtual outage probabilities. Alike Algo. 1,
the estimation error increases with larger
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Fig. 3. Relative MSE ofy versus the Nakagami parameterfor different PLE values, for the estimation method based/icimal outage
probabilities. Note that this algorithm performs more aately at lower values ofn.
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Fig. 4. Relative MSE ofy versusN for Algorithm 2 for v = 3,4 (dashed lines) and the same upon employing the distribdititmy
based technique (solid lines). The latter method is seemastidally improve the estimation accuracy, in particidren~ is large.
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Fig. 5. The theoretical expected cardinality of the trarisng set for various values @, m and~y.
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Fig. 6. Relative MSE ofy versus the number of time slots for different PLE values tlierestimation method based on the mean cardinality
of the transmitting set. In contrast to Algo. 1 and 2, thetie#daMSE decreases with increasing
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Fig. 7. Relative MSE ofy versus the Nakagami parametearfor the estimation algorithm based on the mean cardinafith® transmitting
set. The estimates are more accurate at lower
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Fig. 8. Relative MSE ofy versus the number of time slots, for the three estimatioordhgns, with and without consideration of mobility.
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Fig. 9. Relative MSE ofy versus the number of coordinating nodes, for each of thenastin algorithms.
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Fig. 10. The considered Poisson network model with the ggsabregion A having a different value of PLfs, compared to the rest of
the network B. The attenuation between nodesand n. is modeled by a piecewise linear path loss model.
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Fig. 11. Relative MSEy for algorithm 3 at different locationsz(0). The true values of the PLE arg = 4 for x < 5 and~, = 3 for
T > 5.

A=1,p=005y=4m=1, NO=—25dBm
0.5 ‘ ‘ ‘
=©- Regular Lattice
0.4 =B Matern (h = 0.2) 1
=& Thomas Cluster (1=1,0=1,R=1)

Relative MSE

1 Il Il Il Il Il
100200 400 600 800 1000 1200 1400 1600 1800 2000
Number of time slots N

Fig. 12. Relative MSE ofy versus the number of time slots, for three non-PPP modelsath case, Algorithm 3 is found to estimate
accurately.
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