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Abstract

In wireless channels, the path loss exponent (PLE) has a strong impact on the quality of links, and hence,

it needs to be accurately estimated for the efficient design and operation of wireless networks. In this paper, we

address the problem of PLE estimation in large wireless networks, which is relevant to several important issues in

networked communications such as localization, energy-efficient routing, and channel access. We consider a large

ad hoc network where nodes are distributed as a homogeneous Poisson point process on the plane and the channels

are subject to Nakagami-m fading. We propose and discuss three distributed algorithms for estimating the PLE

under these settings which explicitly take into account theinterference in the network. In addition, we provide

simulation results to demonstrate the performance of the algorithms and quantify the estimation errors. We also

describe how to estimate the PLE accurately even in networkswith spatially varying PLEs and more general node

distributions.

I. INTRODUCTION

The wireless channel presents a formidable challenge as a medium for reliable high-rate communication.

It is responsible not only for the attenuation of the propagated signal but also causes unpredictable spatial

and temporal variations in this loss due to user movement andchanges in the environment. In order

to capture all these effects, the path loss for RF signals is commonly represented as the product of a

deterministic distance component (large-scale path loss)and a randomly-varying component (small-scale

fading) [1]. The large-scale path loss model assumes that the received signal strength falls off with distance

http://arxiv.org/abs/0802.0351v2
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according to a power law, at a rate termed the path loss exponent (PLE). Fading describes the deviations

of the received signal strength from the power-law decay dueto shadowing and the constructive and

destructive addition of its multipath components. While the small-scale fading behavior of the wireless

channel can be well-represented using stochastic processes1 [2], it is critical to accurately estimate the

PLE for the efficient design and operation of wireless networks.

This estimation problem is non-trivial even for a single link due to the existence of multipath propagation

and thermal noise. For large wireless networks without infrastructure, the problem is further complicated

due to the following reasons: First, the achievable performance of a typical ad hoc or sensor network

is not only susceptible to noise and fading, but also to interference due to the presence of simultaneous

transmitters. Dealing with fading and interference simultaneously is a major difficulty in the estimation

problem. Second, the distances between nodes themselves are subject to uncertainty. Often, the distribution

of the underlying point process can be statistically determined, but precise locations of the nodes are harder

to measure. In such cases, we will need to consider the fadingand distance ambiguities jointly, i.e., define

a spatial point process that incorporates both.

In this paper, we present three distributed algorithms to accurately estimate the channel’s PLE for

large wireless networks with uniformly randomly distributed nodes in the presence of fading, noise and

interference, based solely on received signal strength measurements. We also provide simulation results to

illustrate the performance of the methods and study the estimation error. Additionally, we briefly describe

how to accurately estimate the PLE in environments with spatially varying PLE values and for more general

node distributions. The remainder of the paper is structured as follows. Section II provides a few examples

to motivate the importance of knowing the PLE for the analysis and design of communication systems

and discusses the prior work on the estimation problem. Section III presents the system and channel

models. Section IV describes three distributed algorithmsfor PLE estimation, each based on a specific

network characteristic, and provides the mean squared error (MSE) performance of the algorithms based

on simulation. Section V suggests two simple ways to improvethe accuracy of the estimation algorithms.

Section VI briefly discusses the sensitivity of the algorithms to variations in the system model, and Section

VII concludes the paper.

1While modeling wireless channels, the small-scale fading amplitude is often assumed to be distributed as a Rayleigh, Rician or a
Nakagami-m random variable.
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II. M OTIVATION AND RELATED WORK

A. Motivation

In this section, we illustrate the importance of knowing thePLE for efficient design and operation of

wireless networks. Though it is often assumed in analysis and design problems that the value of the PLE

is known a priori, this is not true in practice, and hence, thePLE needs to be accurately estimated during

the network initialization phase.

The PLE estimation problem is closely related to that of localization, which is an integral component of

network self-configuration. When bestowed with the abilityto detect their positions, sensor nodes deployed

in an ad hoc fashion can support a rich set of geographically aware protocols and accurately report the

regions of detected events. Detailed knowledge of the nodes’ locations is also needed for performing

energy-efficient routing of packets in the network. An important class of localization algorithms is based

on received signal strength (RSS) measurements [3], [4], but it needs accurate estimates of the PLE

to perform well. Another fundamental issue in sensor networks is the sensing problem that deals with

how well a target area or a phenomenon can be monitored. Studying network characteristics such as

connectivity is important for such applications and requires accurate estimates of the PLE [5], [6].

A good knowledge of the PLE is also essential for designing efficient networks. In [7], the authors

discuss capacity results for TDMA-based linear networks and show that the optimum number of hops to

achieve a desired end-to-end rate strongly depends on the PLE. For example, when the desired (bandwidth-

normalized) spectral efficiency exceeds the PLE, single-hop transmission outperforms multihopping. Many

of the existing results on capacity scaling for large ad hoc networks strongly depend on the PLE as

well. With γ being the PLE, the best known achievability result [8] states that for a network havingn

uniformly randomly located nodes on the plane, the capacityscales asn2−γ/2 for 2 ≤ γ < 3 and as
√

n

for γ ≥ 3. Depending on the value of the PLE, appropriate routing strategies (nearest-neighbor hopping

or hierarchical cooperative schemes) may be implemented toreach the maximally achievable scaling of

the system throughput.

Energy consumption in wireless networks is a crucial issue that needs to be addressed at all the layers of

the communication system. In [9], the author analyzes the energy consumed for several routing strategies

that employ hops of different lengths in a large network withuniformly randomly distributed nodes. Using

the results therein, we demonstrate that a good knowledge ofthe PLE is necessary for efficient routing.

Consider the following two simple schemes where communication is assumed to occur only in a sector
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φ around the source-destination axis.

1) Route acrossn nearest neighbor hops in a sectorφ, i.e., the next-hop node is the nearest neighbor

that lies within±φ/2 of the axis to the destination.

2) Transmit directly to then′th nearest neighbor in the sectorφ. Here,n′ is chosen in a way that the

expected progress is the same for both schemes.

From [9], the ratio of the consumed energies for the two schemes is obtained as

E1

E2

=
n2Γ(1 + γ/2)Γ(n′)

Γ(n′ + γ/2)
,

whereΓ(.) represents the gamma function andn′ = π
4
(n2−1)+1. Observe that the PLE plays an important

role in determining energy-efficient routing strategies. In particular, whenγ is small, scheme 2 consumes

less energy while relaying is more beneficial at high PLE values.

The performance of contention-based systems such as slotted ALOHA is very sensitive to the contention

probability p, hence it is critical to choose the optimal operating point of the system. The value of the

contention parameter is determined based on various motives such as maximizing the network throughput

[10] or optimizing the spatial density of progress [11, Eqn.5.6]. These quantities also greatly depend on

the PLE, and therefore the optimal value of the contention probability can be chosen only after estimating

γ.

B. Review of Literature

In this section, we survey some of the existing PLE estimation methods in the literature. Most authors

have assumed a simplified channel model consisting only of a large-scale path loss component and a

shadowing counterpart, but we are not aware of any prior workthat has considered fading, and, most

importantly, interference in the system model. Therefore,much of the past work on PLE prediction has

focused mainly on RSS-based localization techniques. However, ignoring interference in the system model

is not realistic, in particular since PLE estimation needs to be performed before the network is organized.

Estimation based on a known internode distance probabilitydistribution is discussed in [12]. The

authors assume that the distance distributionpR(r) between neighboring nodes is known or can be

determined easily. With the transmit power equal toP0[dBm] (assume this is a constant for all nodes),

the theoretic mean RSS averaged over neighboring node pairs(in the absence of interference) isP =
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P0ER [R−γ ]. E.g., if the internodal distance distribution is (i.i.d.)Rayleigh2 with meanR0, then we have

P = P0 (2R0/
√

π)
−γ

Γ(1− γ/2). The value ofγ is estimated by equatingP to the empirical mean value

of the RSS measured over several node pairs.

If the nearest-neighbor distribution is in a complicated form that is not integrable, an idea similar to the

quantile-quantile plot can be used [12]. For cases where it might not be possible to obtain the neighbor

distance distribution, the idea of estimatingγ using the concept of the Cayley-Menger determinant or the

pattern matching technique [12] is useful.

In [13], the authors consider a network where the path loss between a few low-cost sensors is measured

and stored for future use. They then propose an algorithm that employs interpolation techniques to estimate

the path loss between a sensor and any arbitrary point in the network. In [14], a PLE estimator based on the

method of least squares is discussed and used in the design ofan efficient handover algorithm. However,

as described earlier, the situation is completely different when interference and fading are considered and

these purely RSS-based estimators cannot be used. Also, none of the prior estimation algorithms works

in a fully distributed nature.

III. SYSTEM MODEL

We consider an infinite planar ad hoc network, where nodes aredistributed as a homogeneous Poisson

point process (PPP)Φ of densityλ. Therefore, the number of points lying in a Borel setB, denoted by

Φ(B), is Poisson-distributed with meanλν2(B), whereν2(·) is the two-dimensional Lebesgue measure

(area). Also, the number of points in disjoint sets are independent random variables. The PPP model for

the node distribution is ubiquitously used and may be justified by claiming that sensor nodes are dropped

from an aircraft in large numbers; for mobile ad hoc networks, it may be argued that terminals move

independently of each other.

The attenuation in the channel is modeled as the product of the large-scale path loss with exponentγ

and a flat block-fading component. Also, the noise is taken tobe AWGN with mean powerN0. To obtain

concrete results, the fading amplitudeH is taken to be Nakagami-m distributed. Lettingm = 1 results in

the well-known case of Rayleigh fading, while lower and higher values ofm signify stronger and weaker

fading scenarios respectively. The case of no fading is modeled by settingm → ∞. When dealing with

2When nodes are arranged uniformly randomly on the plane, thenearest-neighbor distance is Rayleigh distributed [9].
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signal powers, we use the power fading variable denoted byG = H2. The pdf ofG is given by [15]

pG(x) =
mm

Γ(m)
xm−1 exp(−mx), m ≥ 1/2, (1)

and its moments are

EG[Gn] =
Γ(m + n)

mnΓ(m)
, n ∈ R

+. (2)

Note thatG captures the random deviation from the large-scale path loss, thusEG[G] = 1.

Since the PLE estimation is usually performed during network initialization, it is reasonable to assume

that the transmissions in the system during this phase are uncoordinated. Therefore, we take the channel

access scheme to be ALOHA. We shall see in Section V that even if other MAC schemes were available,

ALOHA is a good choice of MAC protocol since employing it minimizes the spatio-temporal correlations

in the interference, which helps improve the estimation accuracy. We denote the ALOHA contention

probability by a constantp. Therefore, nodes independently decide to transmit with probability p or

remain idle with probability1 − p in any time slot3. Consequently, the set of transmitters at any given

moment forms a PPPΦ′ of densityλp. Also, since there is no information available for power control,

we assume that all the transmit powers are equal to unity. Then, the interference at nodey is given by

IΦ(y) =
∑

z∈Φ′

Gzy‖z − y‖−γ,

whereGzy is the fading gain of the channel fromz to y, and‖ · ‖ denotes the Euclidean distance.

We define the communication from the transmitter atx to the receiver aty to be successful if and only

if the signal-to-noise and interference ratio (SINR) aty is larger than a thresholdΘ, which depends on

the modulation and coding scheme and the receiver structure. Mathematically speaking, an outage at a

receiver aty occurs if and only if
Gxy‖x − y‖−γ

N0 + IΦ′\{x}(y)
≤ Θ, (3)

whereIΦ′\{x}(y) denotes the interference in the network aty andx is the desired transmitter.

IV. PATH LOSSEXPONENT ESTIMATION

This section describes three fully distributed algorithmsfor PLE estimation, each based on a certain

network characteristic, and provides simulation results on the estimation errors. The first algorithm uses

3The beginning and ending times of a slot is based on the individual node’s clock cycle. Thus, time slots across different nodes need not
(and in general, will not) be synchronized. We will only assume that the duration of the slots are the same.
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the mean interference value and assumes the network densityλ to be known. Algorithms 2 and 3 are

based on outage probabilities and the network’s connectivity properties, respectively, and do not require

knowledge ofλ or the Nakagami parameterm.

The PLE estimation problem is essentially tackled by equating the empirical (observed) values of the

aforementioned network characteristics to the theoretically established ones to obtain the estimateγ̂. In

each time slot, nodes either transmit (w.p.p) or listen to record measurements (w.p.1−p). After obtaining

the required measurement values over several time slots, the estimation process can be performed at each

node in a distributed fashion.

The simulation results provided in this paper are obtained using MATLAB. To analyze the mean error

performance of the algorithms, we use estimates resulting from 50000 different realizations of the PPP.

Each PPP is generated by distributing a Poisson number of points uniformly randomly in a50×50 square

with density1. To avoid border effects, we use the measurements recorded at the node lying closest to the

center of the network. The accuracy of the algorithms is characterized using the relative MSE, defined as

E
[

(γ̂ − γ)2] /γ. The contention probability is taken to bep = 0.05 in each case4, andN0 = −25 dBm.

A. Algorithm 1: Estimation Using the Mean Interference

In many situations, the network density is a design parameter and hence known. In other cases, it is

possible to estimate the density (see [16, Sec. 2.7] and the references therein for a survey of the estimation

methods for a PPP). This section discusses a PLE estimation algorithm that uses the knowledge of the

densityλ.

A simple technique to infer the PLEγ when the Nakagami parameterm is unknown is based on the

mean interference. According to this method, nodes simply need to record the strength of the received

power that they observe and use it to estimateγ. We first state existing theoretic results and subsequently

describe how the estimation can be performed in practice.

For the PPP network running the slotted ALOHA protocol, thenth cumulant of the interference resulting

from transmitters in an annulus of inner radiusA and outer radiusB around the receiver node is given

by [17]

Cn = 2πλpEG[Gn]
B2−nγ − A2−nγ

2 − nγ
. (4)

4This value ofp was found to be suitable to obtain several quasi-different realizations of the PPPΦ′ and helped obtain accurate estimates
in a reasonable number of time slots.
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In particular, we can consider only the caseγ > 2 (a fair assumption in a wireless scenario) and letB

be large (considering the entire network) so that the mean interference is

µI = C1 = 2πλp
A2−γ

γ − 2
, (5)

which is independent ofm. Consequently, the mean received power isµR = µI + N0. Note from (5) that

the mean received power is infinite forA = 0. However, the large-scale path loss model is valid only

in the far-field of the antenna and breaks down for very small distances. Denote the (known) near-field

radius by a positive constantA0.

The algorithm based on the interference moments matches theobserved and theoretic values of the

mean received power and is described as follows.

• Record the strengths of the received powersR1, . . . , RN at any arbitrarily chosen node duringN

time slots and evaluate the empirical mean received power(1/N)
∑N

i=1 Ri.

• Equate the empirical mean to the theoretical value ofµR (with A = A0) and estimateγ using a

look-up table and the known values ofp, N0 and (known or estimated density)λ̂.

Fig. 1 depicts the relative MSE values of the estimated PLEγ̂ for differentγ andN values. The estimates

are seen to be accurate over a wide range of PLE values, in particular when the PLE is small. Furthermore,

the MSE is seen to converge within just about1000 time slots, i.e., in a few seconds or less, depending

on the hardware used.

The estimatêγ can be used along witĥλ to also estimate the Nakagami parameterm. Indeed, from

(4), the variance of the interference is

σ2
I = C2 = 2πλp

(

1 +
1

m

)

A2−2γ

2γ − 2
. (6)

Since noise and interference are independent of each other,the variance of the received power isσ2
R =

σ2
I +σ2

N , whereσ2
N denotes the (known) variance of the noise power. Therefore,an estimate of the fading

parameterm is obtained by inverting (6) as

m̂ =

(

(σ2
R − σ2

N )(γ̂ − 1)

πλ̂pA2−2γ̂
0

− 1

)−1

. (7)

B. Algorithm 2: Estimation Based on Virtual Outage Probabilities

We now describe an estimation method based on outage probabilities that requires the knowledge of

neither the network density nor the Nakagami fading parameter. We first review some theoretical results
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and then present a practical scheme to estimateγ.

In [11], it is shown that when the signal power is exponentially distributed, the success probability

ps across any link in the Poisson network is equal to the productof the Laplace transforms of noise

and interference. For the rest of this subsection, we assumethat the system is interference-limited, i.e.,

N0 ≪ I. In particular, when the transceiver pair separation is unity5, we can express the probability of a

successful transmission [17] as

ps ≈ exp(−c1Θ
2/γ), (8)

where

c1 = λpπE[G2/γ ]Γ (1 − 2/γ) =
λpπΓ (m + 2/γ) Γ (1 − 2/γ)

Γ(m)m2/γ
.

To estimateγ, the nodes are required to measure the SIR values during several time slots and use it

to compute the empirical success probability, which matches the theoretical value (8). However, it is

impractical to place transmitters for each receiver node where a SIR measurement is taken. Instead, nodes

can simple measure the received powers, and compute the (virtual) SIRs taking the signal powers to be

independent realizations of an exponential random variable. This algorithm is implemented at each node

as follows.

• Record the values of the received powersR1, . . . , RN at the node duringN time slots. Take the

signal powersSi, 1 ≤ i ≤ N , to beN independent realizations of an exponential random variable

with unit mean. Using the valuesSi/Ri, ∀i, a histogram of the observed SIR values is obtained.

• Evaluate the empirical success probabilities at two different thresholds, i.e., computeps,j = (1/N)
∑N

i=1 1{Si/Ri>Θ

j = 1, 2.

• Match the empirically observed values with the theoreticalvalues: From (8), we obtainln(ps,1)/ ln(ps,2) =

(Θ1/Θ2)
2/γ . Solving for γ yields the estimate

γ̂ =
2 ln(Θ1/Θ2)

ln(ln(ps,1)/ ln(ps,2))
, (9)

which is independent of bothλ andm.

Fig. 2 plots the relative MSE of̂γ for Θ1 = 10 dB andΘ2 = 0 dB for differentγ andN values. We see

that the error is small when the PLE is small, but increases atlarger values of the PLE.

5When the transmitter node is unit distance away from the receiver node, the PLE will not affect the received power strength. This case
is particularly helpful for the implementation of this PLE estimation algorithm.
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Fig. 3 plots the relative MSE of̂γ versusm for various PLE values computed at the end ofN = 10000

time slots. Note that the algorithm performs more accurately at lower values ofm. We provide an intuitive

explanation for this behavior in Section IV-D.

We have seen thatγ can be estimated by measuring the outages at two specific values of the threshold.

We now describe how to improve the estimation accuracy, at the cost of additional complexity. The idea

is to find the best fit of the empirical distribution of the SIR to the theoretical value given by (8). Denote

the observed values of the SIRs duringN time slots byβ1, . . . , βN . Let the empirical complementary cdf

of the SIR atβi be F̄ (βi). We use the Kolmogorov-Smirnov statistic [18] to define the goodness-of-fit.

Accordingly, the estimate of the PLE is given by

γ̂ = arg min
γ

max
1≤i≤N

(

F̄ (βi) − exp(−c1β
2/γ
i )

)

. (10)

The distribution (or curve) fitting method works effectively because of the difference in the behavior of

the outage probability with respect to the parametersλ, m andγ. Specifically, consider the exponent in

(8), and letf(Θ) = c1Θ
2/γ . In the plot off(Θ) versusΘ, a change in the value ofλ or m only scales

the functionf , while changingγ skews it. Thus, the value ofγ that fits the distribution can be efficiently

estimated by fitting the curve, even whenλ andm are unknown.

Fig. 4 plots the relative MSE of̂γ versus the number of time slots, forγ = 3, 4. To find the solution

to (10), we used the in-built function ’fminsearch’ in MATLAB. The dashed lines indicate the MSE for

the case where the estimation is performed using only two specific values of the threshold (as in (9)) and

depict the improvement in performance obtained by employing distribution fitting. Evidently, whenλ or

m (or both) is known, the estimation accuracy can be improved further.

C. Algorithm 3: Estimation Based on the Cardinality of the Transmitting Set

Without the knowledge of the network densityλ or the Nakagami parameterm, the PLE can be

accurately estimated also based on the connectivity properties of the network. In this subsection, we

derive the average number of nodes that are connected to an arbitrary node in the network and describe

a PLE estimation algorithm based on our analysis.

For any nodey, define itstransmitting set T (y) as the group of transmitting nodes whom it receives a

(correctly decodable) packet from, in a given time slot. More formally, for receivery, transmitter nodex

is in its transmitting set if they are connected, i.e., the SINR at y is greater than a certain thresholdΘ.
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Note that this set changes from time slot to time slot. Also note that forΘ = 0 dB, the condition for a

transceiver pair to be connected is that the received signalstrength is greater than the interference power.

Thus, forΘ ≥ 1, the cardinality of the transmitting set,|T (y)|, can at most be one, and that transmitter is

the one with the best channel to the receiver. The estimationalgorithm is based on matching the theoretical

and empirical values of the mean number of elements in the transmitting set. The following proposition

forms the basis of this estimation scheme.

Proposition 4.1: Under the conditions ofm ∈ N andN0 ≪ I, the mean cardinality of the transmitting

set of any arbitrary node in the network,̄NT , is proportional toΘ−2/γ .

Proof: For N0 ≪ I, the success probability for a transceiver pair at an arbitrary distanceR units

apart can be expressed as

ps(R) = EI

[

Pr(GR−γ > IΘ | I)
]

(a)
= EI

[
∫ ∞

IΘRγ

mm

Γ(m)
xm−1 exp(−mx)dx

]

(b)
=

1

Γ(m)

∫ ∞

0

Γ(m, xΘRγm)pI(x)dx, (11)

where (a) is obtained using (1) and(b) using the definition of the upper incomplete gamma function6,

Γ(·, ·). Here,pI(x) denotes the pdf of the interference.

The expressions can be further simplified whenm is an integer. Form ∈ N, we have

ps(R) (a)
=

m−1
∑

k=0

1

k!

∫ ∞

0

(xΘRγm)k exp(−xΘRγm)pI(x)dx

(b)
=

m−1
∑

k=0

(−ΘRγm)k

k!

dk

dsk
MI(s)|s=ΘRγm, (12)

where MI(s) is the moment generating function (MGF) ofI. Here, (a) is obtained from the series

expansion of the upper incomplete gamma function and(b) using the definition of the MGF. When the

node distribution is Poisson, we have the following closed-form expression for the MGF [17, Eqn. 20]:

MI(s) = exp(−λpπEG[G2/γ ]Γ(1 − 2/γ)s2/γ), for γ > 2.

Using this, we get

ps(R) = exp(−c2R
2)

m−1
∑

k=0

(c2R
2)

k

k!

(

2

γ

)k

, m ∈ N (13)

wherec2 = λpπEG(G2/γ)Γ(1 − 2/γ)(Θm)2/γ = c1(Θm)2/γ .

6Mathematica: Gamma[a,z]
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Now, we consider an arbitrary receiver nodey, shift it to the origin and analyze the transmitting set

for this “typical” node. Consider a disk of radiusa centered at the origin. LetE denote the event that

an arbitrarily chosen transmitter inside this disk is iny’s transmitting set. Since the nodes in the disk are

uniformly randomly distributed, we have

Pr(E) = ER[ps(R) | R]

=
2π

πa2

∫ a

0

m−1
∑

k=0

exp(−c2r
2)r2k

k!

(

2c2

γ

)k

rdr

=
1

a2

m−1
∑

k=0

(

2c2

γ

)k ∫ a

0

exp(−c2r
2)

k!
r2k2rdr

(a)
=

1

a2c2

m−1
∑

k=0

(

2

γ

)k
1

k!

∫ c2a2

0

tk exp(−t)dt

(b)
=

1

a2c2

m−1
∑

k=0

(

2

γ

)k
1

k!

(

Γ(k + 1) − Γ(k + 1, c2a
2)
)

,

where(a) is obtained by a simple change of variables (c2r
2 = t) and(b) using the definition of the upper

incomplete gamma function.

Denote the mean number of transmitters in the disk of radiusa by Na = λpπa2. Then, we can write

N̄T = E|T (y)| = lim
a→∞

Na Pr(E)

(a)
=

λpπ

c2

m−1
∑

k=0

(

2

γ

)k

=
λpπ

c2

1 −
(

2
γ

)m

1 − 2
γ

(b)
=

Γ(m)
(

1 −
(

2
γ

)m)

Γ(m + 2
γ
)Γ(2 − 2

γ
)Θ2/γ

. (14)

Here,(a) is obtained using the fact thatlimz→∞ Γ(a, z) = 0 and(b) using the definition ofc2 and (2).

The analytical value of the mean cardinality of the transmitting set whenm ∈ N can be evaluated from

(14). It is plotted in Fig. 5 for two different thresholds andγ = {2.5, 3, 3.5, 4, 4, 5}. Interestingly, since

Γ(2 + 2/γ) = (1 + 2/γ)Γ(1 + 2/γ), the values ofN̄T at m = 1 andm = 2 are the same.

From (14), we see that̄NT is inversely proportional toΘ2/γ . Therefore, whenm is a positive integer,

the ratio of the mean cardinalities of the transmitting set at two different threshold values is independent

of m. This forms the main idea behind the estimation algorithm, and we surmise that this behavior holds

at arbitrarym ∈ R
+.

The algorithm based on the cardinality of the transmitting works at each node in the network as follows.
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• For a known threshold valueΘ1 ≥ 1, setNT,1(i) = 1 in time sloti, 1 ≤ i ≤ N , if the condition SIR

> Θ1 holds, i.e., the node can correctly decode a packet andNT,1(i) = 0 otherwise. Compute the

empirical mean cardinality averaged over several time slots, N̄T,1 = (1/N)
∑N

i=1 NT,1(i).

• Likewise, evaluateN̄T,2 = (1/N)
∑N

i=1 NT,2(i) for another threshold value,Θ2 ≥ 1.

• Equate the mean cardinalities of the transmitting set for the two different threshold values to obtain

N̄T,1/N̄T,2 = (Θ2/Θ1)
2/γ . Following this,γ is estimated as

γ̂ =
2 ln(Θ2/Θ1)

ln(N̄T,1/N̄T,2)
. (15)

Thus, this algorithm requires the knowledge of neitherλ nor m.

Since the performance of this algorithm depends on knowing whether packets are correctly decoded

or not, it is advisable to keep time slots across different nodes synchronized so that the SIR at any node

remains the same throughout a slot of time (or the packet transmission time). However, this assumption

may be relaxed by making the duration of a time slot large relative to the packet transmission time, and

settingNT (i) = 1 even if at least one of the received packets is decoded successfully.

Fig. 6 plots the empirical relative MSE of̂γ for algorithm 3 versus the number of time slotsN for

various PLE values, while Fig. 7 shows the relative MSE ofγ̂ versusm for N = 10000. Unlike Algo.

1 and 2, the relative MSE decreases withγ in this case. Also, we observe that the MSE is low at lower

values ofm and increases withm.

D. Discussion

The problem of PLE estimation is fundamental and non-trivial. Each of the three algorithms we have

described is fully distributed and can be performed at each node in the network. There is no need for

coordination among nodes, and they do not require any information on the locations of nodes in the

network or the Nakagami parameterm. Simulation results validate that the estimates are quite accurate

over a large range of the system parametersγ and m. Based on the relative MSE values, we conclude

that at low values ofγ, Algo. 1 performs the best (though it requires the network density to be known),

while whenγ is high, Algo. 3 is preferred. If time slots across nodes are not synchronized, Algo. 2 is

useful. Also, the convergence of the MSE is seen to occur within about2000 time slots for all of the

algorithms. For time slots of the order of milliseconds, it takes only a few seconds for the PLE to be

estimated in practice.
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Each of the estimation algorithms works by equating empirically measured values of certain network

characteristics with their corresponding theoretical values. There is a caveat though, that needs to be

addressed. The theoretical results used are for the “average network” (they are obtained by averaging over

all possible realizations of the transmitter locations andchannel states). However, in practice we have

only a single realization of the node distribution at hand. Thus, even though the set of transmitters and the

fading component of the channel change independently in different slots, the node locations remain the

same and the interference at the nodes are spatio-temporally correlated [19]. This means that in general,

the empirically computed values only approximate the theoretic results and the estimates are biased. The

bias (and the MSE) can be significantly lowered if the nodes that record measurements have access to

several independent realizations of the PPP and we use this idea later to improve the estimation accuracy

(see Section V). The ALOHA MAC scheme turns out to be particularly helpful in this regard.

The fact that nodes have access to just a single realization of the PPP also intuitively explains why the

relative MSE decreases withm for Algorithms 2 and 3. Indeed, the variance ofG is 1 + 1/m (obtained

from (2)), which increases with decreasingm. Considering the fading and link distance ambiguities jointly,

a lowerm corresponds to having greater randomness in the location ofthe nodes (upon taking the fading

component to be a constant). Thus, this condition is equivalent to nodes being able to see several diverse

realizations of the process over different time slots, and leads to a lower MSE.

V. IMPROVING THE ESTIMATION ACCURACY

As mentioned, the values measured at the nodes match the theoretical values more closely if each node

has access to a larger number of realizations of the process.Fortunately, in the scenario where nodes are

distributed as a homogeneous PPP, we can employ two simple ways based on this principle to improve

the estimation accuracy. We describe them in this section and also provide simulation results on the MSE

that validate the significant improvement in the performance of the estimation algorithms.

A. Mobile nodes

Assume that nodes are mobile and that in each time slot, they each move with a constant velocity

v in a randomly chosen directionφ, that is uniformly distributed in[0, 2π) (random waypoint mobility

model). Since the nodes move independently, each node observes a different PPP realization (with the

same density) in each different time slot. By recording measurements over different time slots,γ can be

estimated more accurately. Fig. 8 plots the relative MSE ofγ̂ for each of the three methods whenv = 0.1
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m/slot. The dashed lines represent the relative MSE when mobility is not considered, and are also plotted

to depict the improvement in performance.

B. Coordinating Nodes

Alternatively, if nodes in a neighborhood can coordinate and exchange information, then their mea-

surements can be combined to yield a more accurate estimate of the PLE. Since the homogeneous PPP

is ergodic, for any measurable function defined onΦ, its statistical average (obtained over different PPP

realizations), and its spatial average (obtained over different nodes in a single realization) are equal almost

everywhere in the limit [16, pp. 172]. Based on this result, the estimation process can be performed more

accurately on a single realization of the network by collecting the recorded measurements over several

nodes.

Fig. 9 plots the relative MSE of the estimate versus the number of coordinating nodesK. From the

figure, we see that the MSE sharply reduces with largerK. As mentioned earlier, withK → ∞, the

relative MSE→ 0. To obtain the simulation results, we used the collective measurements recorded at

the K nodes located closest to the network center overN = 2000 slots. The estimates are based on the

averaged value of these measurements.

VI. SENSITIVITY OF THE ALGORITHMS

We have formalized our algorithms based on the homogeneous PPP model and a spatially invariant

path loss assumption. However, in reality, it is more likelythat the nodal arrangement is not completely

spatially random but takes on other forms such as being clustered or more regular. Also, the PLE value

changes depending on the terrain type and the environmentalconditions and hence cannot always be taken

to be a constant over the entire network. In this section, we briefly comment on the sensitivity of our

algorithms to these issues and illustrate how the PLE may be accurately estimated well even when some

assumptions are relaxed.

A. Spatial Invariance of the PLE

In this subsection, we address the case where the PLE is not spatially invariant. For illustration purposes,

we consider part of a network consisting of a square subregion A of sidel centered at the origin with PLE

γ1, and an outer region B of PLEγ2 as shown in Fig. 10. To model the path loss, we use the multi-slope
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piecewise linear model [1]. Accordingly, for transmitter noden1 and receiver noden2, the path loss over

a distancer1 +r2 (see Fig. 10) is(r1/r0)
−γ1 · (1+r2/r1)

−γ2 , for r1 > r0, wherer0 is the near-field radius.

Under this setting, we study the error performance of Algorithm 3 for different locations along thex-

axis. Fig. 11 plots the relative MSE of̂γ when l = 10 with γ1 = 4 andγ2 = 3 and shows that Algorithm

3, by itself, works quite accurately even in a network with two different values ofγ. The same qualitative

behavior can be expected from Algorithms 1 and 2.

For cases where the PLE varies more rapidly or when the network is sparse, nodes can coordinate

to obtain better estimates. To accurately do this, it is helpful if nodes have a general idea of thePLE

coherence length, i.e., the distance over which the PLE can be assumed to be invariant. This may vary

from about a mile if the network terrain changes rapidly to asmuch as hundreds of miles if the network

extends from an urban to a suburban to a rural area. It can be assumed that the network operator has a

general idea about variations in the PLE and based on this, the network is divided into sub-areas with

constant PLEs, each of which is estimated separately. For instance, if the PLE coherence length isd,

each node can estimate the PLE based on measurements recorded by other nodes that lie inside a disk of

radiusd around it.

B. Other Point Process Models

Even though all the algorithms are formulated for the case ofthe homogeneous PPP, they may also be

used to estimate the PLE in different spatial point process patterns. The idea is to artificially make the

arrangement of nodes appear more “spatially random”. This can be effectively performed upon simply

employing randomized power control, wherein instead of having all the nodes transmit at unit power, we

let nodes transmit at power levels drawn from a certain distribution. In fact, with independent thinning and

appropriate rescaling, every point process is transformedinto a stationary PPP (in the limitp → 0) [21,

Prop. 11.3.I]. A good choice for the distribution of transmit power levels is the exponential distribution

since it is also the maximum non-negative entropy distribution [20], i.e., among all continuous pdfs

supported on[0,∞) with a given mean, the exponential distribution has the maximum entropy.

Upon employing power control, the algorithms designed for the PPP case may also be used to estimate

the PLE for other point processes. Fig. 12 plots the relativeMSE values for Algorithm 3 for three non-PPP

network models: the regular lattice grid, the Matern hard core process and the Thomas cluster process

(for details on these point processes, please refer to [16]), and shows that the algorithm’s performance is

quite accurate when power control (based on the exponentialdistribution) is employed. Similar qualitative
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behavior may be expected of Algorithms 2 and 3. Using power control improves the estimation accuracy

even in the case that the nodal arrangement is a PPP since it helps realize diverse realizations of the PPP.

VII. SUMMARY

In wireless systems, knowing the value of the PLE is critical, thus an accurate estimate is essential

for their analysis and design. We offer a novel look at the issue of PLE estimation in a large wireless

network, by taking into account Nakagami-m fading, the underlying node distribution and the network

interference. We assume that nodes are arranged as a homogeneous PPP on the plane and the MAC

scheme is slotted ALOHA (at least during the PLE estimation phase). For such a system, we present

three distributed algorithms for PLE estimation, and provide simulation results to quantify the estimation

errors. By incorporating mobility or coordination among nodes, the accuracy of the estimators can be

greatly improved. The proposed algorithms perform well even when the PLE is spatially varying, and upon

employing power control, in networks with more general nodedistributions. To the best of our knowledge,

they are the first fully distributed PLE estimation algorithms in wireless networks with interference. This

work is extensible to one- or three-dimensional networks ina straightforward manner.
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Fig. 1. Relative MSE of̂γ versus the number of time slots for different PLE values, forthe estimation method based on the mean
interference. The error is small, in particular when the PLEis small.
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Fig. 2. Relative MSE of̂γ versus the number of time slots for the estimation method based on virtual outage probabilities. Alike Algo. 1,
the estimation error increases with largerγ̂.



20

10 1000.5 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Nakagami parameter m

R
el

at
iv

e 
M

S
E

λ = 1, p = 0.05, N
0
 = −25 dBm, Θ

1
 = 10 dB, Θ

2
 = 0 dB, N = 10000

 

 

γ = 2.5
γ = 3
γ = 3.5
γ = 4
γ = 4.5
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probabilities. Note that this algorithm performs more accurately at lower values ofm.
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Fig. 5. The theoretical expected cardinality of the transmitting set for various values ofΘ, m andγ.
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