
Sunil Srinivasa

Generative Models

Guess the celebrities.

TOP ROW: GENERATED IMAGES

BOTTOM ROW: REAL CELEBRITY IMAGES

Nvidia paper: Progressive growing of GANs submitted to ICLR 2018 - https://arxiv.org/abs/1710.10196

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

The context of generative models
 Supervised Learning Models

 Given input X and labels y, find a model that maps X to y.

 E.g., Regression, SVM, CNN, RNN, …

 Unsupervised Learning Models

 Given input X alone (no labels!), find a model that finds some underlying

structure in date

 E.g., Clustering, Principal Component Analysis (PCA), feature leaning, …

 Semi-supervised Learning Models

 Given (a few) inputs X with their labels, generate (many more)

samples that are similar to the inputs (similar in terms of the

probability distribution).

 E.g., RBM, P-RNN, GAN, VAE, …

Taxonomy of Deep Generative

Networks

Pic courtesy: Ian Goodfellow’s NIPS keynote talk - https://arxiv.org/pdf/1701.00160.pdf

All these methods attempt to minimize the divergence between 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙.

https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf

Timeline
 Gaussian mixture models

 Hidden Markov models

 …

 1986 – Boltzmann machines (Geoffrey Hinton)

 2013 – Variational Auto Encoders (Diederik Kingma)

 2014 – Generative Adversarial Networks (Ian Goodfellow)

 2016 – Pixel RNNs (Aaron van den Oord)

 VAEs and GANs are the most popular generative models to-
date!

Boltzmann Machine
 Back-fed input units (Yellow)

 Also becomes the output unit after training!

 Probabilistic hidden units (Green)

 Each edge is governed by a trainable weight.

 Training (“Wake-Sleep” algorithm):
 Given visible states (from inputs), compute the hidden states.
 Given the computed hidden states, compute the visible states.
 Repeat until equilibrium is attained.

 Restricted Boltzmann machine
 No intra-layer connection between hidden/visible units
 Prevents over fitting, faster training

 Tricky to train!

MNIST samples generated by RBMs

Pixel RNN/CNN
 Generate value of a pixel based on neighboring pixels

 RNN architecture used to model the joint probability distribution.

 Explicit probability density and good-looking samples.

 Sequential generation is slow!

 Pixel CNN improves training time (only by a little bit).

Sample images generated by a model

trained on ImageNet 32x32 images

Autoencoders
 Attempts to reconstruct input data (𝑥 → 𝑥).

 Finds a meaningful (and low dimensional) hidden representation 𝑧.

 Encoder and decoder are often modeled via deep networks.

 Useful for classification/transformation, but not generation.

Variational autoencoders
 Change the loss function to one that captures KL divergence

between 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙 and minimize it.

 Probabilistic hidden layer

 Results in a evidence lower bound (ELBO) that needs to be

maximized!

VAE Training

VAE generation

Structure incorporated in latent

variables!

Generative Adversarial Networks

 No explicit probability density function required!

 Game theoretic approach

 Two player game

 Discriminator network: tries to discriminate between real and generated

images.

 Generator network: tries to fool discriminator by generating real-looking

images from noise.

GAN Math

Advantages of GANs over other models

 Parallel sample generation compared to Pixel RNN

 No variational or approximate bounds needed

 No explicit density function required

 Generator design has very few restrictions

 RBMs: Distributions that admit Markov chain sampling

 Linear ICA: Invertible distributions

 Subjectively regarded as producing crispiest samples!

GAN versus VAE

GanZoo – 300+ types of GANs

https://github.com/hindupuravinash/the-gan-zoo

2015

2017

SOTA Generated Images

References

 CS231 course notes:

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lect

ure13.pdf

 Ian Goodfellow Nips 2016 Keynote:

https://arxiv.org/pdf/1701.00160.pdf

 My blog article on SDSRA-AI:

https://sdsra-ai.github.io/blog/2017/04/07/Inverse-

Transform-Sampling-Via-Generative-Adversarial-

Networks.html

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html

Discriminative and Generative Models

 DISCRIMINATIVE - Learns a function that maps input x to
output y. In probabilistic terms, it learns the conditional
p(y|x).

 GENERATIVE - Learns the joint distribution of x and y
simultaneously. In probabilistic terms, it leans p(x,y).

 Note: p(x,y) can always be converted to p(y|x) via Bayes
rule, but more importantly, it can help create new (x,y)
samples.

 Generative models are particularly useful for generating a lot
of fresh data from little unlabeled data (semi-supervised
learning).

Restricted Boltzmann Machine (RBM)

 Symmetric connections; no intra-layer connection between

hidden units or visible units.

 Constrastive divergence algorithm is used for training.

 Given v, compute the probabilities of h and sample a hidden

activation vector h; compute the outer product of v and h and

call this the positive gradient.

 From h, sample a reconstruction v', then h' from this. (Gibbs

sampling step)

 Compute the outer product of v' and h' and call this the

negative gradient.

Flavors of generative models

 An auto-encoder attempts to minimize the squared distance

between xdata and xmodel.

 A GAN attempts to minimize the KL divergence between

p(xdata) and p(xmodel).

 A variational auto-encoder attempts to minimize the KL

divergence between p(zdata|xdata) and p(zmodel|xmodel)

Deep Belief Nets

 Obtained by stacking RBMs

