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Generative Models 



Guess the celebrities. 

TOP ROW: GENERATED IMAGES 

BOTTOM ROW: REAL CELEBRITY IMAGES 

Nvidia paper: Progressive growing of GANs submitted to ICLR 2018 - https://arxiv.org/abs/1710.10196  
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The context of generative models 
 Supervised Learning Models 

 Given input X and labels y, find a model that maps X to y. 

 E.g., Regression, SVM, CNN, RNN, … 

 Unsupervised Learning Models 

 Given input X alone (no labels!), find a model that finds some underlying 

structure in date 

 E.g., Clustering, Principal Component Analysis (PCA), feature leaning, … 

 Semi-supervised Learning Models 

 Given (a few) inputs X with their labels, generate (many more) 

samples that are similar to the inputs (similar in terms of the 

probability distribution). 

 E.g., RBM, P-RNN, GAN, VAE, … 



Taxonomy of Deep Generative 

Networks 

Pic courtesy: Ian Goodfellow’s NIPS keynote talk - https://arxiv.org/pdf/1701.00160.pdf  

All these methods attempt to minimize the divergence between 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙. 
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Timeline 
 Gaussian mixture models 

 Hidden Markov models 

 … 

 1986 – Boltzmann machines (Geoffrey Hinton) 

 2013 – Variational Auto Encoders (Diederik Kingma) 

 2014 – Generative Adversarial Networks (Ian Goodfellow) 

 2016 – Pixel RNNs (Aaron van den Oord) 

 

 VAEs and GANs are the most popular generative models to-
date! 

 



Boltzmann Machine 
 Back-fed input units (Yellow) 

 Also becomes the output unit after training! 

 Probabilistic hidden units (Green) 

 Each edge is governed by a trainable weight. 

 Training (“Wake-Sleep” algorithm): 
 Given visible states (from inputs), compute the hidden states. 
  Given the computed hidden states, compute the visible states. 
  Repeat until equilibrium is attained. 

 

 Restricted Boltzmann machine 
 No intra-layer connection between hidden/visible units  
 Prevents over fitting, faster training 

 

 Tricky to train! 
 
 



MNIST samples generated by RBMs 



Pixel RNN/CNN 
 Generate value of a pixel based on neighboring pixels 

 

 

 

 

 

 

 RNN architecture used to model the joint probability distribution. 

 Explicit probability density and good-looking samples. 

 Sequential generation is slow! 

 Pixel CNN improves training time (only by a little bit). 



Sample images generated by a model 

trained on ImageNet 32x32 images 



Autoencoders 
 Attempts to reconstruct input data (𝑥 →  𝑥 ). 

 Finds a meaningful (and low dimensional) hidden representation 𝑧. 

 Encoder and decoder are often modeled via deep networks. 

 Useful for classification/transformation, but not generation. 



Variational autoencoders 
 Change the loss function to one that captures KL divergence 

between 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙  and minimize it. 

 Probabilistic hidden layer 

 Results in a evidence lower bound (ELBO) that needs to be 

maximized! 

 



VAE Training 



VAE generation 



Structure incorporated in latent 

variables! 



Generative Adversarial Networks 

 No explicit probability density function required! 

 Game theoretic approach 

 Two player game 

 Discriminator network: tries to discriminate between real and generated 

images.  

 Generator network: tries to fool discriminator by generating real-looking 

images from noise. 



GAN Math 



Advantages of GANs over other models 

 Parallel sample generation compared to Pixel RNN 

 No variational or approximate bounds needed 

 No explicit density function required 

 Generator design has very few restrictions 

 RBMs: Distributions that admit Markov chain sampling 

 Linear ICA: Invertible distributions 

 Subjectively regarded as producing crispiest samples! 



GAN versus VAE 

 



GanZoo – 300+ types of GANs 

https://github.com/hindupuravinash/the-gan-zoo 

2015 

2017 



SOTA Generated Images 
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Discriminative and Generative Models 

 DISCRIMINATIVE - Learns a function that maps input x to 
output y. In probabilistic terms, it learns the conditional 
p(y|x). 

 GENERATIVE - Learns the joint distribution of x and y 
simultaneously. In probabilistic terms, it leans p(x,y). 

 Note: p(x,y) can always be converted to p(y|x) via Bayes 
rule, but more importantly, it can help create new (x,y) 
samples. 

 Generative models are particularly useful for generating a lot 
of fresh data from little unlabeled data (semi-supervised 
learning). 



Restricted Boltzmann Machine (RBM) 

 Symmetric connections; no intra-layer connection between 

hidden units or visible units. 

 Constrastive divergence algorithm is used for training. 

 Given v, compute the probabilities of h and sample a hidden 

activation vector h; compute the outer product of v and h and 

call this the positive gradient. 

 From h, sample a reconstruction v', then h' from this. (Gibbs 

sampling step) 

 Compute the outer product of v' and h' and call this the 

negative gradient. 



Flavors of generative models 

 An auto-encoder attempts to minimize the squared distance 

between xdata and xmodel. 

 A GAN attempts to minimize the KL divergence between 

p(xdata ) and p(xmodel ). 

 A variational auto-encoder attempts to minimize the KL 

divergence between p(zdata|xdata ) and p(zmodel|xmodel ) 

 



Deep Belief Nets 

 Obtained by stacking RBMs 


