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Generative Models 



Guess the celebrities. 

TOP ROW: GENERATED IMAGES 

BOTTOM ROW: REAL CELEBRITY IMAGES 

Nvidia paper: Progressive growing of GANs submitted to ICLR 2018 - https://arxiv.org/abs/1710.10196  
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The context of generative models 
 Supervised Learning Models 

 Given input X and labels y, find a model that maps X to y. 

 E.g., Regression, SVM, CNN, RNN, … 

 Unsupervised Learning Models 

 Given input X alone (no labels!), find a model that finds some underlying 

structure in date 

 E.g., Clustering, Principal Component Analysis (PCA), feature leaning, … 

 Semi-supervised Learning Models 

 Given (a few) inputs X with their labels, generate (many more) 

samples that are similar to the inputs (similar in terms of the 

probability distribution). 

 E.g., RBM, P-RNN, GAN, VAE, … 



Taxonomy of Deep Generative 

Networks 

Pic courtesy: Ian Goodfellow’s NIPS keynote talk - https://arxiv.org/pdf/1701.00160.pdf  

All these methods attempt to minimize the divergence between 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙. 
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Timeline 
 Gaussian mixture models 

 Hidden Markov models 

 … 

 1986 – Boltzmann machines (Geoffrey Hinton) 

 2013 – Variational Auto Encoders (Diederik Kingma) 

 2014 – Generative Adversarial Networks (Ian Goodfellow) 

 2016 – Pixel RNNs (Aaron van den Oord) 

 

 VAEs and GANs are the most popular generative models to-
date! 

 



Boltzmann Machine 
 Back-fed input units (Yellow) 

 Also becomes the output unit after training! 

 Probabilistic hidden units (Green) 

 Each edge is governed by a trainable weight. 

 Training (“Wake-Sleep” algorithm): 
 Given visible states (from inputs), compute the hidden states. 
  Given the computed hidden states, compute the visible states. 
  Repeat until equilibrium is attained. 

 

 Restricted Boltzmann machine 
 No intra-layer connection between hidden/visible units  
 Prevents over fitting, faster training 

 

 Tricky to train! 
 
 



MNIST samples generated by RBMs 



Pixel RNN/CNN 
 Generate value of a pixel based on neighboring pixels 

 

 

 

 

 

 

 RNN architecture used to model the joint probability distribution. 

 Explicit probability density and good-looking samples. 

 Sequential generation is slow! 

 Pixel CNN improves training time (only by a little bit). 



Sample images generated by a model 

trained on ImageNet 32x32 images 



Autoencoders 
 Attempts to reconstruct input data (𝑥 →  𝑥 ). 

 Finds a meaningful (and low dimensional) hidden representation 𝑧. 

 Encoder and decoder are often modeled via deep networks. 

 Useful for classification/transformation, but not generation. 



Variational autoencoders 
 Change the loss function to one that captures KL divergence 

between 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙  and minimize it. 

 Probabilistic hidden layer 

 Results in a evidence lower bound (ELBO) that needs to be 

maximized! 

 



VAE Training 



VAE generation 



Structure incorporated in latent 

variables! 



Generative Adversarial Networks 

 No explicit probability density function required! 

 Game theoretic approach 

 Two player game 

 Discriminator network: tries to discriminate between real and generated 

images.  

 Generator network: tries to fool discriminator by generating real-looking 

images from noise. 



GAN Math 



Advantages of GANs over other models 

 Parallel sample generation compared to Pixel RNN 

 No variational or approximate bounds needed 

 No explicit density function required 

 Generator design has very few restrictions 

 RBMs: Distributions that admit Markov chain sampling 

 Linear ICA: Invertible distributions 

 Subjectively regarded as producing crispiest samples! 



GAN versus VAE 

 



GanZoo – 300+ types of GANs 

https://github.com/hindupuravinash/the-gan-zoo 

2015 

2017 



SOTA Generated Images 
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Discriminative and Generative Models 

 DISCRIMINATIVE - Learns a function that maps input x to 
output y. In probabilistic terms, it learns the conditional 
p(y|x). 

 GENERATIVE - Learns the joint distribution of x and y 
simultaneously. In probabilistic terms, it leans p(x,y). 

 Note: p(x,y) can always be converted to p(y|x) via Bayes 
rule, but more importantly, it can help create new (x,y) 
samples. 

 Generative models are particularly useful for generating a lot 
of fresh data from little unlabeled data (semi-supervised 
learning). 



Restricted Boltzmann Machine (RBM) 

 Symmetric connections; no intra-layer connection between 

hidden units or visible units. 

 Constrastive divergence algorithm is used for training. 

 Given v, compute the probabilities of h and sample a hidden 

activation vector h; compute the outer product of v and h and 

call this the positive gradient. 

 From h, sample a reconstruction v', then h' from this. (Gibbs 

sampling step) 

 Compute the outer product of v' and h' and call this the 

negative gradient. 



Flavors of generative models 

 An auto-encoder attempts to minimize the squared distance 

between xdata and xmodel. 

 A GAN attempts to minimize the KL divergence between 

p(xdata ) and p(xmodel ). 

 A variational auto-encoder attempts to minimize the KL 

divergence between p(zdata|xdata ) and p(zmodel|xmodel ) 

 



Deep Belief Nets 

 Obtained by stacking RBMs 


