
Sunil Srinivasa

Generative Models

Guess the celebrities.

TOP ROW: GENERATED IMAGES

BOTTOM ROW: REAL CELEBRITY IMAGES

Nvidia paper: Progressive growing of GANs submitted to ICLR 2018 - https://arxiv.org/abs/1710.10196

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

The context of generative models
 Supervised Learning Models

 Given input X and labels y, find a model that maps X to y.

 E.g., Regression, SVM, CNN, RNN, …

 Unsupervised Learning Models

 Given input X alone (no labels!), find a model that finds some underlying

structure in date

 E.g., Clustering, Principal Component Analysis (PCA), feature leaning, …

 Semi-supervised Learning Models

 Given (a few) inputs X with their labels, generate (many more)

samples that are similar to the inputs (similar in terms of the

probability distribution).

 E.g., RBM, P-RNN, GAN, VAE, …

Taxonomy of Deep Generative

Networks

Pic courtesy: Ian Goodfellow’s NIPS keynote talk - https://arxiv.org/pdf/1701.00160.pdf

All these methods attempt to minimize the divergence between 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙.

https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf

Timeline
 Gaussian mixture models

 Hidden Markov models

 …

 1986 – Boltzmann machines (Geoffrey Hinton)

 2013 – Variational Auto Encoders (Diederik Kingma)

 2014 – Generative Adversarial Networks (Ian Goodfellow)

 2016 – Pixel RNNs (Aaron van den Oord)

 VAEs and GANs are the most popular generative models to-
date!

Boltzmann Machine
 Back-fed input units (Yellow)

 Also becomes the output unit after training!

 Probabilistic hidden units (Green)

 Each edge is governed by a trainable weight.

 Training (“Wake-Sleep” algorithm):
 Given visible states (from inputs), compute the hidden states.
 Given the computed hidden states, compute the visible states.
 Repeat until equilibrium is attained.

 Restricted Boltzmann machine
 No intra-layer connection between hidden/visible units
 Prevents over fitting, faster training

 Tricky to train!

MNIST samples generated by RBMs

Pixel RNN/CNN
 Generate value of a pixel based on neighboring pixels

 RNN architecture used to model the joint probability distribution.

 Explicit probability density and good-looking samples.

 Sequential generation is slow!

 Pixel CNN improves training time (only by a little bit).

Sample images generated by a model

trained on ImageNet 32x32 images

Autoencoders
 Attempts to reconstruct input data (𝑥 → 𝑥).

 Finds a meaningful (and low dimensional) hidden representation 𝑧.

 Encoder and decoder are often modeled via deep networks.

 Useful for classification/transformation, but not generation.

Variational autoencoders
 Change the loss function to one that captures KL divergence

between 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙 and minimize it.

 Probabilistic hidden layer

 Results in a evidence lower bound (ELBO) that needs to be

maximized!

VAE Training

VAE generation

Structure incorporated in latent

variables!

Generative Adversarial Networks

 No explicit probability density function required!

 Game theoretic approach

 Two player game

 Discriminator network: tries to discriminate between real and generated

images.

 Generator network: tries to fool discriminator by generating real-looking

images from noise.

GAN Math

Advantages of GANs over other models

 Parallel sample generation compared to Pixel RNN

 No variational or approximate bounds needed

 No explicit density function required

 Generator design has very few restrictions

 RBMs: Distributions that admit Markov chain sampling

 Linear ICA: Invertible distributions

 Subjectively regarded as producing crispiest samples!

GAN versus VAE

GanZoo – 300+ types of GANs

https://github.com/hindupuravinash/the-gan-zoo

2015

2017

SOTA Generated Images

References

 CS231 course notes:

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lect

ure13.pdf

 Ian Goodfellow Nips 2016 Keynote:

https://arxiv.org/pdf/1701.00160.pdf

 My blog article on SDSRA-AI:

https://sdsra-ai.github.io/blog/2017/04/07/Inverse-

Transform-Sampling-Via-Generative-Adversarial-

Networks.html

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html
https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html

Discriminative and Generative Models

 DISCRIMINATIVE - Learns a function that maps input x to
output y. In probabilistic terms, it learns the conditional
p(y|x).

 GENERATIVE - Learns the joint distribution of x and y
simultaneously. In probabilistic terms, it leans p(x,y).

 Note: p(x,y) can always be converted to p(y|x) via Bayes
rule, but more importantly, it can help create new (x,y)
samples.

 Generative models are particularly useful for generating a lot
of fresh data from little unlabeled data (semi-supervised
learning).

Restricted Boltzmann Machine (RBM)

 Symmetric connections; no intra-layer connection between

hidden units or visible units.

 Constrastive divergence algorithm is used for training.

 Given v, compute the probabilities of h and sample a hidden

activation vector h; compute the outer product of v and h and

call this the positive gradient.

 From h, sample a reconstruction v', then h' from this. (Gibbs

sampling step)

 Compute the outer product of v' and h' and call this the

negative gradient.

Flavors of generative models

 An auto-encoder attempts to minimize the squared distance

between xdata and xmodel.

 A GAN attempts to minimize the KL divergence between

p(xdata) and p(xmodel).

 A variational auto-encoder attempts to minimize the KL

divergence between p(zdata|xdata) and p(zmodel|xmodel)

Deep Belief Nets

 Obtained by stacking RBMs

