Generative Models

Sunil Srinivasa

Guess the celebrities.

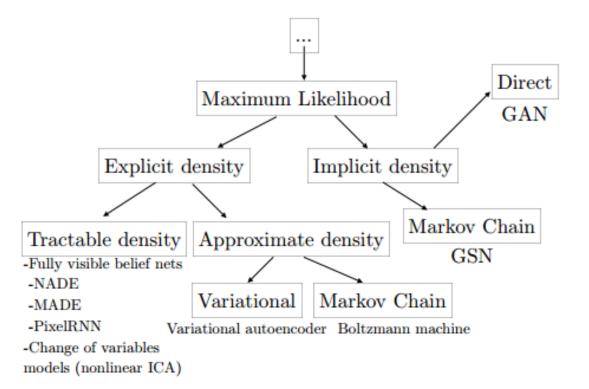
TOP ROW: GENERATED IMAGES BOTTOM ROW: REAL CELEBRITY IMAGES

Nvidia paper: Progressive growing of GANs submitted to ICLR 2018 - https://arxiv.org/abs/1710.10196

The context of generative models

- Supervised Learning Models
 - Given input X and labels y, find a model that maps X to y.
 - E.g., Regression, SVM, CNN, RNN, ...
- **Unsupervised** Learning Models
 - Given input X alone (no labels!), find a model that finds some underlying structure in date
 - E.g., Clustering, Principal Component Analysis (PCA), feature leaning, ...
- Semi-supervised Learning Models
 - Given (a few) inputs X with their labels, generate (many more) samples that are similar to the inputs (similar in terms of the probability distribution).
 - E.g., RBM, P-RNN, GAN, VAE, ...

Taxonomy of Deep Generative Networks



All these methods attempt to minimize the divergence between p_{data} and p_{model} .

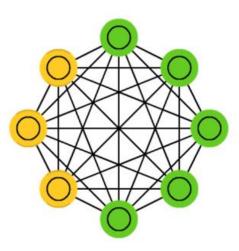
Pic courtesy: Ian Goodfellow's NIPS keynote talk - <u>https://arxiv.org/pdf/1701.00160.pdf</u>

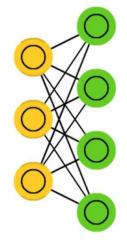
Timeline

- Gaussian mixture models
- Hidden Markov models
- ...
- 1986 Boltzmann machines (Geoffrey Hinton)
- 2013 Variational Auto Encoders (Diederik Kingma)
- 2014 Generative Adversarial Networks (Ian Goodfellow)
- 2016 Pixel RNNs (Aaron van den Oord)
- VAEs and GANs are the most popular generative models todate!

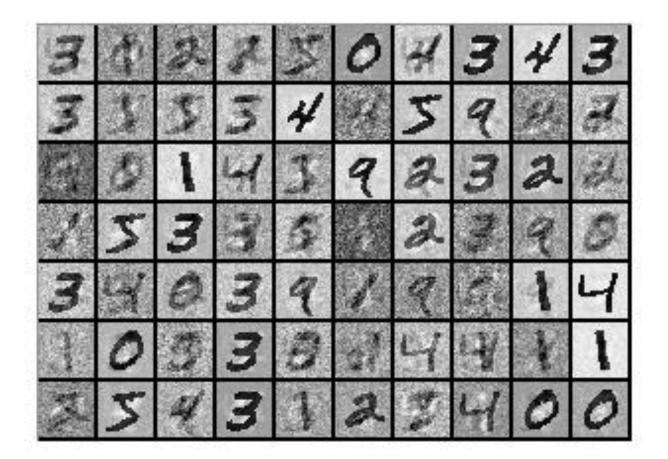
Boltzmann Machine

- Back-fed input units (Yellow)
 - Also becomes the output unit after training!
- Probabilistic hidden units (Green)
- Each edge is governed by a trainable weight.
- Training ("Wake-Sleep" algorithm):
 - Given visible states (from inputs), compute the hidden states.
 - Given the computed hidden states, compute the visible states.
 - Repeat until equilibrium is attained.
- Restricted Boltzmann machine
 - No intra-layer connection between hidden/visible units
 - Prevents over fitting, faster training
- Tricky to train!



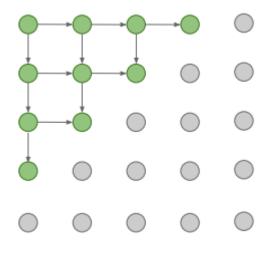


MNIST samples generated by RBMs



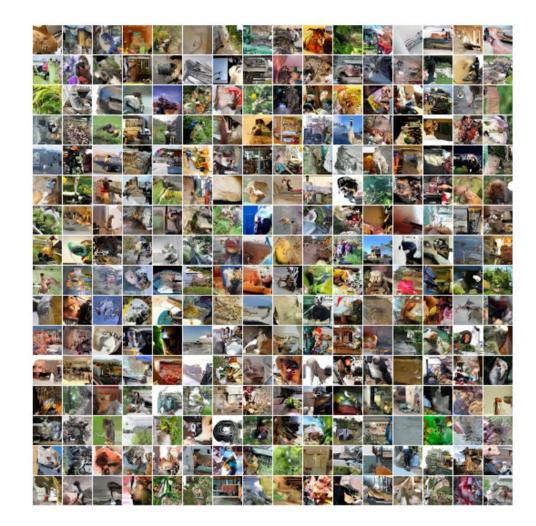
Pixel RNN/CNN

• Generate value of a pixel based on neighboring pixels



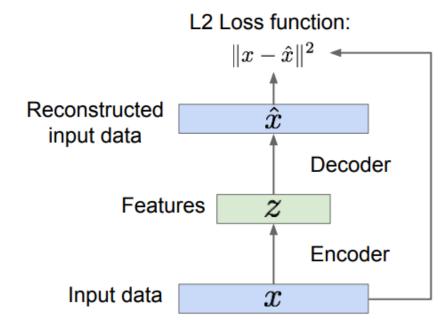
- RNN architecture used to model the joint probability distribution.
- Explicit probability density and good-looking samples.
- Sequential generation is slow!
 - Pixel CNN improves training time (only by a little bit).

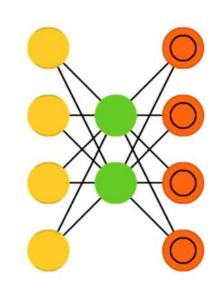
Sample images generated by a model trained on ImageNet 32x32 images



Autoencoders

- Attempts to reconstruct input data ($x \rightarrow \hat{x}$).
- Finds a meaningful (and low dimensional) hidden representation Z.
- Encoder and decoder are often modeled via deep networks.
- Useful for classification/transformation, but not generation.





Variational autoencoders

- Change the loss function to one that captures KL divergence between p_{data} and p_{model} and minimize it.
 - Probabilistic hidden layer
 - Results in a evidence lower bound (ELBO) that needs to be maximized!

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\right] \quad (\text{Bayes' Rule}) \qquad \text{Make approximate posterior distribution close to prior}$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})}\right] \quad (\text{Multiply by constant}) \qquad \text{Cose to prior}$$

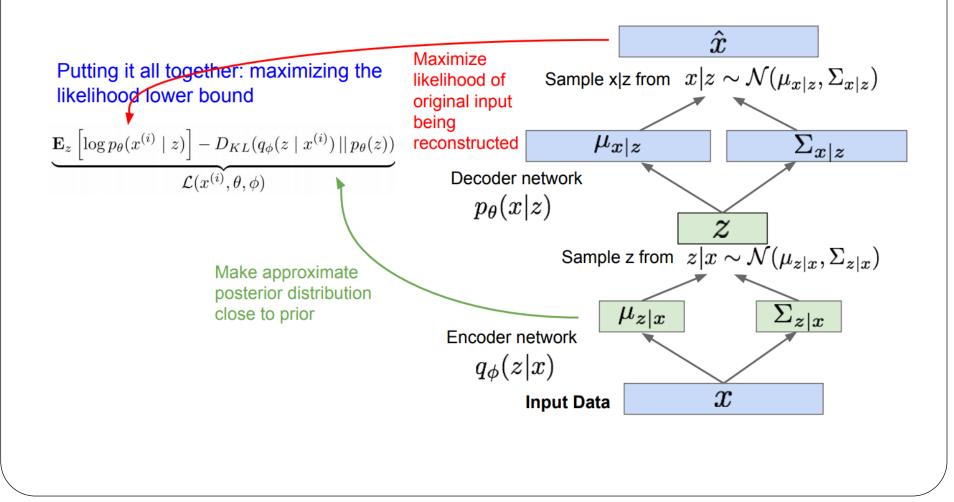
$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] \quad (\text{Logarithms})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))\right]$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$

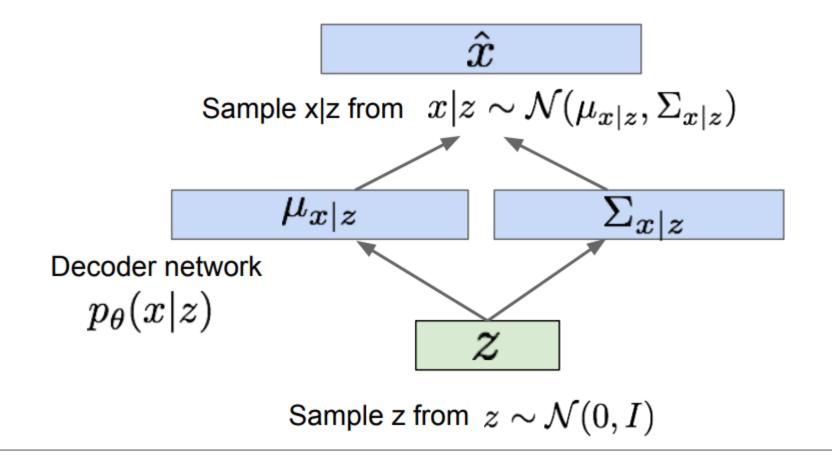
$$\frac{p_{\theta}(x^{(i)}) \ge \mathcal{L}(x^{(i)}, \theta, \phi)}{(\text{ariational lower bound ("ELBO")}}$$

VAE Training



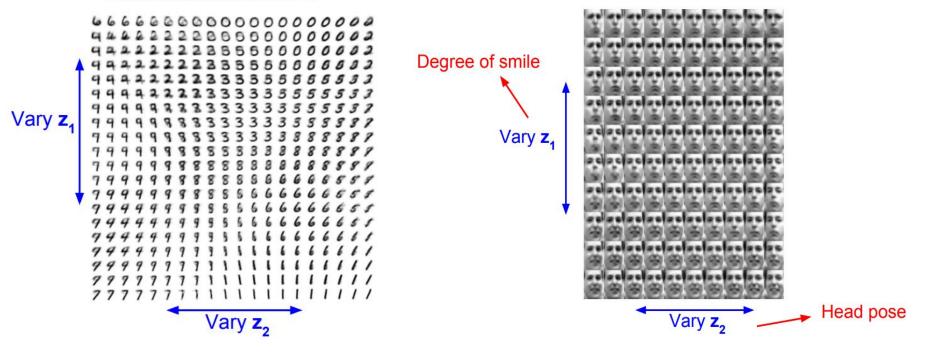
VAE generation

Use decoder network. Now sample z from prior!



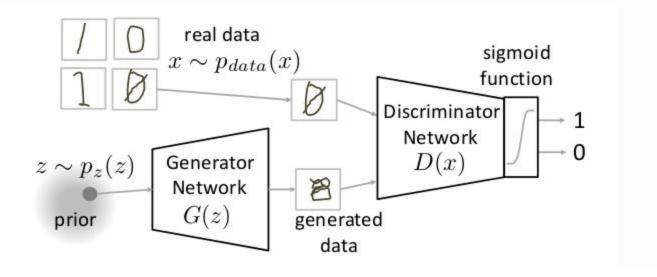
Structure incorporated in latent variables!

Data manifold for 2-d z



Generative Adversarial Networks

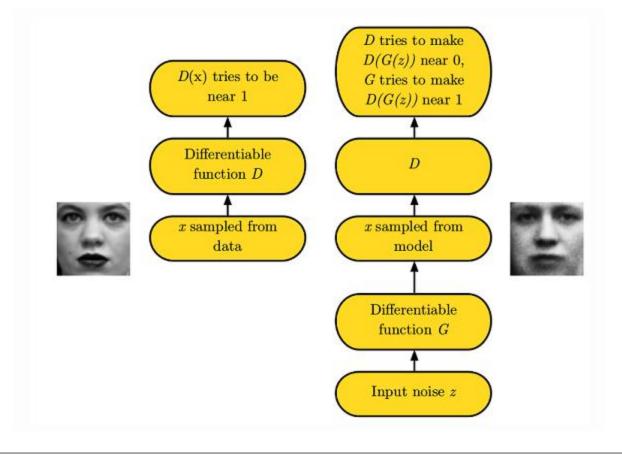
- No explicit probability density function required!
- Game theoretic approach
 - Two player game
 - Discriminator network: tries to discriminate between real and generated images.
 - Generator network: tries to fool discriminator by generating real-looking images from noise.



GAN Math

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$



Advantages of GANs over other models

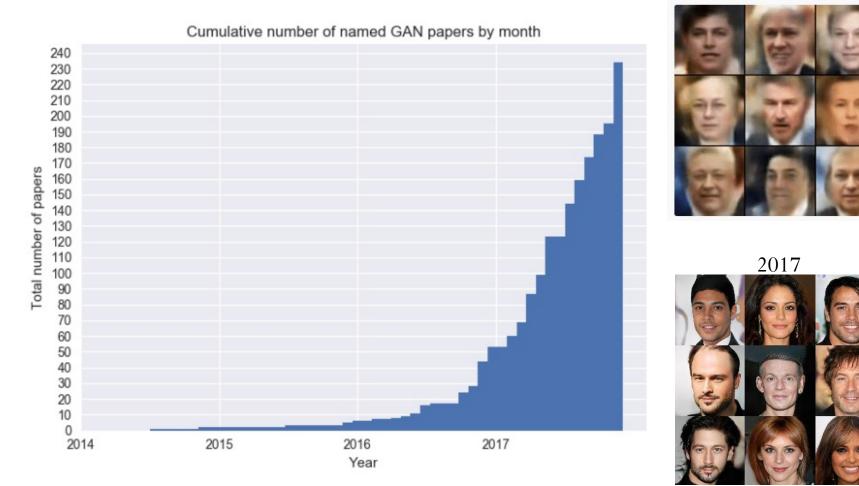
- Parallel sample generation compared to Pixel RNN
- No variational or approximate bounds needed
- No explicit density function required
- Generator design has very few restrictions
 - RBMs: Distributions that admit Markov chain sampling
 - Linear ICA: Invertible distributions
- Subjectively regarded as producing crispiest samples!

GAN versus VAE

Name	Epoch 1	Epoch 10	Epoch 25
VAE	9430 202 202 202 202 202 202 202 202 202 2	76000000000000000000000000000000000000	57993899 77993899 77993899 739899 739899 73989 73989 73989 7399 739
GAN	70702950 86383468 49132876 4914174 74863645 94678308 94678 94678 94678 94678 9478	27703341 09521043 1/802020 161802020 1618020 5380108 5380108 5380108 5380108 53696745 5376843 47532942	71045160 91045160 9105712 9105612 91056 91057991 910579991 91057991 9105799991 910579991 910579991 910579991 91057999990 9105799990 9105799990 9105799990 9105799990 9105799990 9105799990 9105799990 9105799990 9105799990 9105799990 9105799990 910579990 910579990 910579990 910579990 910579990 910579990 910579990 910579990 910579990 910579990 9100000000000000000000000000000000

GanZoo – 300+ types of GANs

2015



https://github.com/hindupuravinash/the-gan-zoo

SOTA Generated Images

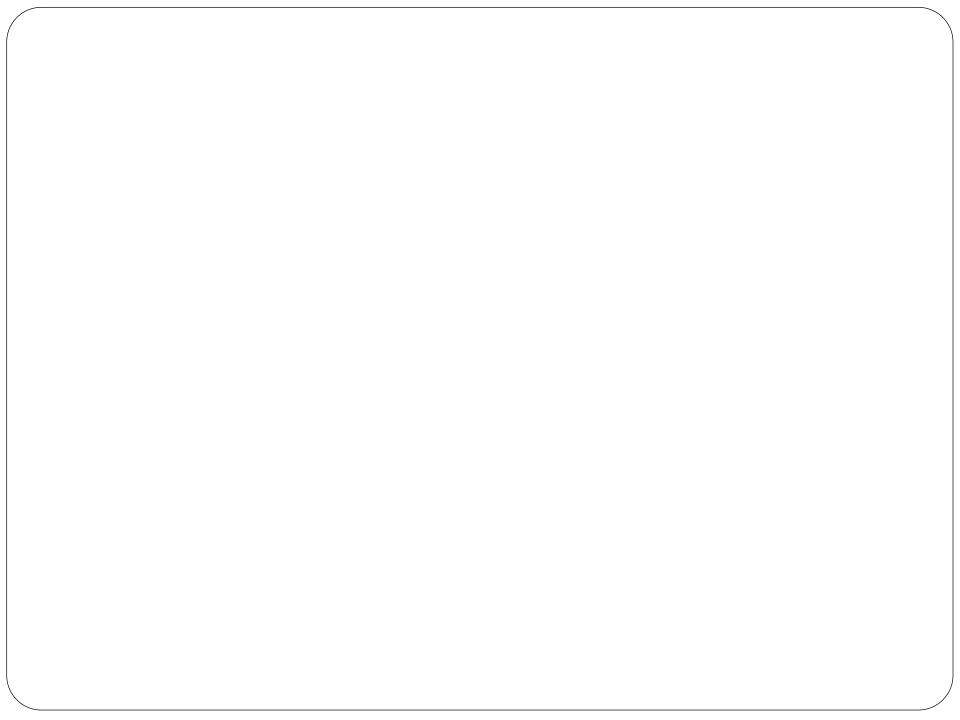
References

• CS231 course notes:

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lect ure13.pdf

- Ian Goodfellow Nips 2016 Keynote: <u>https://arxiv.org/pdf/1701.00160.pdf</u>
- My blog article on SDSRA-AI:

https://sdsra-ai.github.io/blog/2017/04/07/Inverse-Transform-Sampling-Via-Generative-Adversarial-Networks.html



Discriminative and Generative Models

- DISCRIMINATIVE Learns a function that maps input x to output y. In probabilistic terms, it learns the conditional p(y | x).
- GENERATIVE Learns the joint distribution of x and y simultaneously. In probabilistic terms, it leans p(x,y).
- Note: p(x,y) can always be converted to p(y | x) via Bayes rule, but more importantly, it can help create new (x,y) samples.
- Generative models are particularly useful for generating a lot of fresh data from little unlabeled data (semi-supervised learning).

Restricted Boltzmann Machine (RBM)

- Symmetric connections; no intra-layer connection between hidden units or visible units.
- **Constrastive divergence** algorithm is used for training.
 - Given v, compute the probabilities of h and sample a hidden activation vector h; compute the outer product of v and h and call this the positive gradient.
 - From h, sample a reconstruction v', then h' from this. (Gibbs sampling step)
 - Compute the outer product of v' and h' and call this the negative gradient.

Flavors of generative models

- An auto-encoder attempts to minimize the squared distance between $x_{data and xmodel.}$
- A GAN attempts to minimize the KL divergence between $p(x_{data})$ and $p(x_{model})$.
- A variational auto-encoder attempts to minimize the KL divergence between $p(z_{data} | x_{data})$ and $p(z_{model} | x_{model})$

Deep Belief Nets

• Obtained by stacking RBMs