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Introduction 
AI and Machine Learning (ML) are becoming pervasive, allowing new applications for chatbots. 
This paves the way for operational transformations in the field of the cable telecommunication 
industry, where chatbots will soon be able to field some customer contacts to solve their issues in 
real-time -- thereby reducing waiting queues while enhancing service quality, informed by 
consistent answers and considering all available network information in real time. 
 
This article describes the steps service providers can use to build such a chatbot. It and drills into 
the AI/ML elements in charge of performing installation diagnostics, predicting the behavior of 
the systems and users, and pinpointing the root causes critical to fixing issues before they even 
become visible to customers. These highly specialized AI/ML algorithms feed their propositions 
into a decision engine (DE), so as to understand a much larger context, and apply game theory to 
make optimal choices for the customer.  
 
1. Chatbot Architecture 
A chatbot is a computer program that provides an interface that allows customers to interact with 
machine learning systems via auditory or textual methods. Through Chatbots, customers can 
report service issues and get personalized answers or help, using the best knowledge of our 
machine learning systems. Further, Chatbots can obviate the need for customers to navigate 
websites or call for support. An overview of the Chatbot is provided in Figure 1. 

 

Figure 1: Overview of ChatBot 

A chatbot dialog unfolds as follows: A customer interacts, either by typing a query into a mobile 
device, or by directly talking into a microphone which transmits the voice signal to a speech-to-
text algorithm to produce a script of the query. This query is analyzed by a Natural Language 
Processing (NLP) module that extracts the intent of the customer. In some cases, these intents are 
implicit in the query and need to be translated by NLP into an explicit statement, often 
formulated in technical jargon. For example, a query like “it takes very long to download 
images” might be translated into a more generic intent like “internet speed slow,” known in the 
domain knowledge. 
 
This intent is forwarded to the Machine Learning/AI domain for investigation. These ML/AI 
algorithms have access to a wealth of information, such as high-speed internet data, in-home 



  

WiFi data, and many kinds of system and video errors including RDK and XRE. Ideally, all of 
this information is stored in a data lake, with nationwide coverage and a history duration 
spanning over several months to years. These data lakes allow ML algorithms to learn the 
customer behavior or performance of our current networks, and to extract salient events, called 
“features,” which in turn enable algorithms to assess the situation of a customer through a kind 
of fingerprinting.  
 
One method used by ML to fix issues is actually to identify “error fingerprints” from the past and 
learn how they were fixed. All things being equal, applying the same fix should solve the same 
issue with high probability. Additionally, ML algorithms can predict future calls or issues that 
customers are experiencing based on similar “fingerprints” seen in the past.  Domain AI/ML 
finally presents its diagnostics, predictions and recommendations of actions to the DE (decision 
engine.) 
 
The DE gets recommendations from domain AI/ML as input features. These recommendations 
might be incoherent, in competition with or even in contradiction with each other, given that 
they’re created by highly specialized ML algorithms -- each of which has a deep but narrow 
understanding of the world. The DE aims to understand a larger context to select the right 
decision.  
 
In its simplest implementation, a DE can be implemented by a rules engine that can choose the 
best solution for a problem. However, these rules engines are static solutions, and would 
constantly need re-evaluations over time to make sure they still are optimal. A superior 
implementation of the decision engine uses a recommendation system to take into consideration 
larger context domains, along with domain knowledge, to continuously choose the optimal action 
and fix the issue reported by the customer. Our particular implementation uses what’s called a 
“multi-arm bandit algorithm.”  
 
2. Introduction to Machine Learning  
In this section, we define the machine learning algorithms used in this paper. Machine learning 
algorithms try to learn the underlying patterns in data. Depending on the ways that ML 
algorithms learn patterns,  they are categorized into three families: supervised learning, 
unsupervised learning and reinforcement learning. 
 

2.1. Supervised Learning 
Supervised learning is a guided learning approach, meaning that it learns the pattern of the data 
that could optimally predict the provided labels. In our system, we use classifiers to discern 
similarities and differences in data, and to assign them to categories based on similarity. 
Examples of such classification algorithms include identifying objects in a video frame, 
identifying the underlying sentiment in a customer service message, or associating a log message 
from a set-top with a specific error class. The technologies powering classifiers range from the 
simple -- decision trees and random forest algorithms-- to the very complex, such as deep neural 
networks. The choice amongst available technologies is typically related to the level of 
complexity and the number of features in the underlying data. Image classification, for instance, 
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has been shown to benefit greatly by neural networks and its derivative technologies, such as 
convolutional neural nets.  
 

2.2. Unsupervised Learning 
In contrast to supervised learning, unsupervised learning aims to determine underlying patterns 
without any sort of guidance or provided labels. In our system, we use clustering algorithms to 
group similar data into clusters, and the clusters do not have any preset labels. They are typically 
used to understand the behavior of data or to look for any significant deviations in data. For 
example, clustering algorithms could be used to look at anonymized smart home data to build 
user profiles, such as early risers, late risers etcetera, based on common behaviors. Clustering 
algorithms range from the simple, such as k-means clustering, to the complex, like agglomerative 
hierarchical clustering.  
 

2.3. Reinforcement Learning  
Reinforcement learning is a type of ML inspired by behavioral psychology, and concerned with 
how software agents take actions in an environment so as to maximize some notion of 
cumulative reward. Reinforcement learning is studied in many disciplines, including control 
theory, game theory, simulation-based optimization, and more. 
 
Reinforcement Learning is also directly applicable to the operations improvement in the cable 
telecommunication industry, as our networks collectively qualify as complex systems to be 
optimized, despite the impossibility of building a mathematical model of such a system. Early 
implementations of reinforcement learning have been studied in optimal control theory to tackle 
this very issue.  
 
Reinforcement learning can also be used in gaming theory to select the best action to perform 
while optimizing gains. For cable operators, this translates into selecting the best actions to 
perform on an account, while minimizing the disruptions of service. Such an approach is used in 
our Decision Engine. 
 
3. Domain AI 
Three domain-specific AI modules are under development: 

• High Speed Data 
• WiFi 
• Video domain models including XRE, which stands for Cross-platform Runtime 

Environment, and is a platform-independent protocol for distributed applications.  
 

This paper describes the example of XRE. Three problems are assessed in this study. First, how 
to react after an XRE error or a sequence of XRE appears on a device. Second, how can 
consequences of such XRE errors or sequences be predicted, in terms of how important are they 
to our customers, and how much they affect our service? Third, how can these errors be 
prevented from happening in the future, and can problems be solved before they even surface?  
 



  

3.1. XRE React: What to do after an XRE Error? 
This first study investigates three actions that can be performed after observation of an XRE 
error or a sequence of XRE errors for a single device during a time window of an hour. An 
example of an XRE sequence for user a is a1= {XRE-03059, XRE-03059, XRE-10007}. 
Whereas at the same time, user b might receive the sequence b1 = {XRE-10007}, and user c 
might not receive any error during the time window, hence c1 = Æ. All of these sequences 
represent fingerprints of the users’ statuses, and they can be used to perform predictions.  
 
Three independent ML models are used to predict the effectiveness of three actions that may be 
performed to fix the XRE errors (see Figure 2):  

• System Refresh: account refresh + cable card refresh + firmware reset + reboot 
• System Restart: simple box reboot 
• Do Nothing: estimates the XRE error attrition over time, and recommends not to act 

 
The goal of each of these actions is to eradicate the XRE errors. Success is claimed if there are 
no errors in a duration of one hour after the action has been performed.  
 

 
Figure 2: System Refresh, Restart and DoNothing models 

For each of these actions, a supervised ML algorithm learns a classifier to organize samples into 
two classes: Success or failure. During the prediction phase, new examples that have never been 
seen are presented to the classifier, which will predict the probability of success of the action 
(see Figure 3).  

 
Figure 3: System Refresh and Restart Deployment Models 

Current ML results allow the predicted performance of the system refresh model with 70% of 
precision and 87% of recall, meaning that 70% of the recommended system refreshes 
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successfully eradicate the XRE errors, and 87% of the effective system refreshes are captured by 
the ML model. See a visual representation of precision and recall in 
Error! Reference source not found.. 
 
Similarly, the ML results predict the performance of a system restart 
model with a precision of 84% and a recall of 99%. 
 
The outputs of these models are stored in a repository for assessing 
their validities when the actions, system refresh or restart, are 
performed. These actions can either be performed by the customers, 
or by reinforcement learning models executing the ML 
recommendation directly. The reinforcement learning models can 
check the validities of the actions immediately for self-calibration. In 
essence, reinforcement learning is comparable to a feedback loop in 
control systems.  
 

3.2. XRE Predict: Who needs our help now? 
Comcast measures customer satisfaction by using the Net Promoter 
Score (NPS). NPS scores send a very clear message regarding the number of interactions 
required to fix an issue. Customers are fairly happy when systems work flawlessly or get 
repaired before having to call. First call resolutions are generally well accepted, but mark a dip in 
NPS. Given the impact of repeat interactions on NPS scores, it makes much sense to study the 
severity of the XRE fingerprints in aiming to predict and later preempt the customer calls.  
 

3.2.1. Call Predictions 
The call prediction scenario for ML is similar to the previous example, as it also uses supervised 
learning. In this case, ML learns to predict the calls based on XRE errors that occurred over 24 
hours. The modeling of these errors is also more precise, as it records each of the errors into 
hourly buckets. In Figure 5, the studied device received {11 XRE-00021, 5 XRE-03056, 33 
XRE-03059} at 15:00, {7 XRE-00021, 5 XRE-03056, 22 XRE-03059} at 16:00, etc. The goal of 
the ML is to differentiate the callers from the non-callers based on these XRE models, and, given 
a new sequence the ML algorithm never encountered before, predict if this customer will call. 
 
 

Figure 4: 
Precision, Recall 



  

 
Figure 5: Call Predictions Model Flow and Results 

The ML model predicted 64% of the calls that will happen, which is quite a valuable result 
because the learning sets are unbalanced -- meaning there are very few callers as compared to 
non-callers. But the most exploitable result of this study is the high accuracy in predicting a call. 
If the ML predicts a call, it is wrong in less than 1% of the cases. However, the algorithm only 
catches nine percent of the total number of calls. This result is interesting in the sense that we 
can predict some calls with a very high accuracy, and thus are poised to preempt these calls by 
fixing the underlying issues. 
 

3.2.2. Silent Sufferers 
Previous methods used for detecting quality of service issues are typically based on user 
feedback, gathered through chats and calls. Implicitly this means that no news means all is right, 
right? Wrong. 
 
There exists a small category of customers who never use our communication channels, even 
while facing issues. Hence, they are called silent sufferers. These customers are undetectable 
with previous methods, they are unaccounted for in NPS, and user histories indicate that silent 
sufferers often unsubscribe without ever calling.  
 
No supervised learning method can address silent sufferers. We present instead the use of an 
unsupervised ML method. The design principle is to introduce a distance measurement between 
users. The ML measures a fingerprint of a single XRE error over a 24-hour period of time. The 
unsupervised method used is the k-means algorithm, clustering users into classes of similarity 
according to this fingerprint measurement. Experiments show that 90% of the users are clustered 
into the main class (see Figure 6). The devices of these users show a nominal behavior where 
everything works fine, up to specification. Other classes are called outliers, which group similar 
users. Some of these classes prove to have a nominal behavior whereas others might face unusual 
behaviors, for example, degraded service. These classes are called the sufferer classes. 
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Figure 6: Initial Clusters 

We defined several types of logic to combine the classes of sufferers across different XRE errors 
into meta-classes, so as to reinforce the predictive power of the weak predictor classes. Such 
results are described in Figure 7. Since the k-means algorithm performs clustering regardless of 
calls, the resulting meta-classes of sufferers contain, in general, both callers and silent sufferers. 
For each of these classes independently, an algorithm studies the causes mentioned by the callers 
to gather a better understanding of this class. The knowledge acquired through the callers is 
shared to the silent sufferers and allows action on their issues without having them to ever call. 
 

 
Figure 7: Meta Clusters with callers and silent sufferers 

3.3. XRE Prevent: Can we solve the problems before they surface? 
The best way to prevent XRE errors is to understand their root causes and to tackle them before 
they can propagate and morph into customer-impacting XRE errors. It can be done with 
supervised learning but requires advanced feature engineering, because such models rely on a 
number of data sources of different natures/semantics. In particular see Figure 8: 

• Hardware data: XRE telemetry, RDK telemetry, xFi data transfer telemetry 
• Networking data: Spectra data in the cable, WOPR, PHT data 
• Application data: XRE messages 
• Behavioral data: Anonymized click and tune data generated by users.  

 



  

In a first approach, these data were bucketed hourly, in the same manner as in 3.2.1. Because of 
the large number and the heterogeneity of the data sources, this approach is unlikely to work 
because of the different sampling rates in each of these data sources. Some of the data are 
sampled hourly while others are sampled at the micro-second level (e.g. the clicks and tunes). By 
using an hour as the common denominator, the millisecond-rate information of the clicks and 
tunes is washed away, and the clicks and tunes lose most of their precious information.  
 
To overcome such difficulties, we developed our own asynchronous sampling methods into our 
models, inspired by [3]. Asynchronous sampling allows the capture of all the information 
without using buckets. 

 
Figure 8: Root Cause Analysis and Asynchronous Sampling 

4. Decision Engine (DE) 
Each of the `depth-first’ domain AI algorithms provides recommendations based on their narrow 
but deep understanding of the building blocks of a cable operator’s infrastructure. The decision 
engine operates in a `breadth-first’ fashion: It is in charge of collecting these recommendations, 
their contexts, the user’s intent and making sense of it all, to execute the best actions that will 
improve the customer experience. 
 

4.1. Overview 
Figure 9 gives an overview of the decision engine workflow. The customer intent is acquired 
through the NLP module; the customer context is acquired through a virtual assistant guiding 
users in the resolution of their tasks; the customer’s experience is provided by the domain AI 
algorithms presented earlier -- they analyze many sources of raw data, perform a diagnostic of 
the situation and propose actions to fix issues. Together, the customer’s intent, context and 
experience form the overall context or state of the environment. Given this state, the job of the 
decision engine is to take the right action at the minimal cost. In the process, it might have to 
make trade-offs between the actions proposed by the domain AI, as some of these actions, 
though successful, might come at a cost in terms of user impact (see details in Figure 2). For 
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example, the restart of a set top box takes about 7 minutes, whereas the more powerful refresh 
operation fixes potentially more issues but can take (worst case) up to 20 minutes. In some cases, 
the domain AI even calculates the natural error attrition of the system and suggests not to 
perform any action, so as to not adversely impact the user.

 
Figure 9: Decision Engine Data Flow 

For a given context, the decision engine consults its action catalog, assesses the benefits and 
costs of the actions, and finds the best tradeoff to fulfill the customer’s intents. In reinforcement 
learning terminology, the decision engine takes as input a state (or context), and predicts the best 
action(s) to take so as to minimize cost (or maximize reward). 
 

4.2. Multi-Armed Bandit (MAB) Algorithm Overview 
The operation of the decision engine is driven by the 
multi-armed bandit (MAB) algorithm [1], which is 
widely used for single-step decision-making problems. 
The name `multi-armed bandit’ references a gambler 
(generally, a bandit) at a casino with several arms, trying 
to play the right slot machines so as to optimize their 
winnings. 
 
MAB is often depicted in cartoons as an octopus in front 
of several slot machines (each assumed to provide a 
specific payout) and trying to use its several arms to 
determine the slot machine that provides the highest 
payout. 
 
An intrinsic characteristic of MAB algorithms is the `exploration/exploitation’ tradeoff. In the 
context of the slot machine payout, this is what the terms mean: 

• Exploitation: play the machine believed to have the highest payout 
• Exploration: play untested machines to learn if there are higher-paying ones 



  

Thus, the best long-term strategy may involve short-term sacrifices. The octopus will need to 
explore pulling the levers of several machines before it can start to exploit the best one. 
 

4.3. Linear Contextual MAB: Introduction 
Here, we used a `linear’ version of the MAB algorithm, which is depicted in Figure 10. Given a 
context, the linear MAB uses several linear regression models (one for each action) to predict the 
reward for the (state, action) pair. Specifically, for each training sample comprising state, action 
and the corresponding reward, the linear contextual MAB trains a linear regression model that 
maps state to reward. Note that with the data sample comprising action index `k’, only the action 
model `k’ is trained. At test (inference) time, the bandit algorithm predicts the reward for each 
action model and thus can rank the actions based on the rewards yielded. Picking the best action 
all the time creates the exploitation scenario. Exploration is achieved by either using an upper 
confidence bound on the regression fit or using an e-greedy policy, which is a way of selecting 
random actions with uniform distribution from a set of available actions.

 
Figure 10: Linear MAB Machine Learning Flow 

In general, the linear regression models may be replaced by any ML model, such as random 
forest, fully connected networks or generic neural networks, to create non-linear versions of the 
bandit architecture. 
 

4.4. Linear Contextual MAB on the XA App: Experimental Setup 
We now present the results on the linear MAB policy evaluation. This experiment was conducted 
using data gleaned from the Xfinity Assistant (XA) app. The problem was to correctly present 
the actions (or buttons) to a customer, on the XA app, that s/he would most likely click on while 
navigating through the app. The more relevant the presented actions are, the more engaged the 
customer will be, and the more likely his/her question or concern is successfully addressed. 
 
The state, action, and reward details for this problem is described below. 
 
State: We used the raw data from both the XA app logs and context services data. The context 
services data contains anonymized and individualized information such as service mix, 
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appointment events and present and future outage information. From this raw data, we extracted 
features to use as state (context) for our linear regression models. 
 
Reward: In the XA logs, we used the following scheme to assign rewards to buttons. In the set 
of presented buttons, 

• If the user clicked any of the buttons, that specific button gets a reward of +1.0, and other 
presented buttons get rewarded +0.5. 

• If the user did not click on any button (which may happen if the user uttered something 
else or abandoned/closed the app), all buttons get rewarded -1.0. 

 
Action: There are over 300 types of buttons in the button catalog. We only considered the 100 
most frequently occurring buttons as our actions, and grouped all remaining actions into another 
action bucket. This means, in the context of Error! Reference source not found., we would be 
training 101 action models, i.e., K = 101. 
 

4.5. Linear Contextual MAB on the XA App: Policy Evaluation Results 
Given the data represented by the (state, action, tuple) pairs, we can provide results on training 
and policy evaluation [2]. In order to study how the bandit algorithm learns over time, we used 
the following methodology: In each iteration, we trained the bandit on 25,000 data samples and 
subsequently evaluated it on 2,500 test samples. We repeated this for roughly 1,000 iterations 
(which equates to one epoch for the amount of data we have). For evaluating the policy, we used 
the following unbiased offline evaluation methodology: When the action chosen by the algorithm 
matches the action chosen by the user in the data log, we add the corresponding reward. 
Otherwise, the data sample is ignored. 
 
Figure 11 plots the net rewards obtained by the linear MAB over time. The increasing overall 
reward means that the algorithm is learning to explore and exploit the various patterns in the data 
over time. When we examined more closely into the positive and negative rewards that make up 
the net rewards (see Figure 12), we noticed that the algorithm was attempting to increase the 
positive rewards and avoid the negative ones, which is what we desired. 
 



  

 
Figure 11: Linear MAB Policy Evaluation: Net Rewards 

 

 

Figure 12: Linear MAB Policy Evaluation: Positive (left) and Negative (right) 
Rewards 

Conclusion 
The AI/ML building blocks described in this paper are currently being tested in a production 
environment, and some of the early results presented here have been obtained on live data. These 
results are encouraging and show that the productization of the whole Chatbot is just a matter of 
time.  
 
There is actually a good fit between existing AI/ML methods and the cable telecommunication 
industry. We generate an overwhelming wealth of data, the interpretation of which far exceeds 
human capabilities. Our current AI/ML methods are barely scratching the surface of the possible, 
and focus on low hanging fruit to equal the performance of existing customer care. The example 
of the silent sufferers described in this paper is just an illustration of a case where AI/ML can 
reach beyond existing human resources to detect issues that are invisible to the human eye and 
simple query/filter systems or supervised learning. Unsupervised and reinforcement learning is 
well positioned to open new and radically beneficial frontiers in the operational transformation 
of the cable telecommunication industry. 
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Abbreviations 
AI artificial intelligence 
DE decision engine 
HSD high speed data 
MAB multi-armed bandit 
ML machine learning 
NLP natural language processing 
NPS net promoter score 
RDK reference design kit, http://rdkcentral.com/ 
XA App Xfinity assistant app 
XRE cross-platform Runtime Environment 
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