

 © 2018 SCTE•ISBE and NCTA. All rights reserved.

Using AI to Improve the Customer Experience

A Virtual Assistant Chatbot

A Technical Paper prepared for SCTE•ISBE by

Bernard Burg,

Fan Liu,
Abel Villca Roque,

Sunil Srinivasa,
Ryan March,

Comcast
1050 Enterprise way, Sunnyvale CA 94089

+1 408 900 85 75
bernard_burg@comcast.com

Tianwen Chen,

Comcast
1110 Vermont Av NW, Washington DC 20005

Table of Contents
Title Page Number
Table of Contents .. 2
Introduction.. 3

1. Chatbot Architecture... 3
2. Short Introduction to Machine Learning .. 4

2.1. Supervised Learning .. 4
2.2. Unsupervised Learning .. 5
2.3. Reinforcement Learning ... 5

3. Domain AI .. 5
3.1. XRE React: What to do after an XRE Error? .. 6
3.2. XRE Predict: Who needs our help now?... 7

3.2.1. Call Predictions .. 7
3.2.2. Silent Sufferers .. 8

3.3. XRE Prevent: Can we solve the problems before they surface? ... 9
4. Decision Engine ... 10

4.1. Overview ... 10
4.2. Multi-Armed Bandit (MAB) Algorithm Overview .. 11
4.3. Linear Contextual MAB: Introduction .. 12
4.4. Linear Contextual MAB on the XA App: Experimental Setup .. 12
4.5. Linear Contextual MAB on the XA App: Policy Evaluation Results 13

Conclusion... 14
Abbreviations ... 15
Bibliography & References ... 15

List of Figures
Title Page Number
Figure 1: Overview of ChatBot ... 3
Figure 2: System Refresh, Restart and DoNothing models ... 6
Figure 3: System Refresh and Restart Deployment Models .. 6
Figure 4: Precision, Recall ... Error! Bookmark not defined.
Figure 5: NPS Scores versus Number of Calls ... Error! Bookmark not defined.
Figure 6: Call Predictions Model Flow and Results ... 8
Figure 7: Initial Clusters ... 9
Figure 8: Meta Clusters with callers and silent sufferers ... 9
Figure 9: Root Cause Analysis and Asynchronous Sampling .. 10
Figure 10: Decision Engine Data Flow ... 11
Figure 11: Linear MAB Machine Learning Flow .. 12
Figure 12: Linear MAB Policy Evaluation: Net Rewards.. 14
Figure 13: Linear MAB Policy Evaluation: Positive (left) and Negative (right) Rewards 14

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 3

Introduction
AI and Machine Learning (ML) are becoming pervasive, allowing new applications for chatbots.
This paves the way for operational transformations in the field of the cable telecommunication
industry, where chatbots will soon be able to field some customer contacts to solve their issues in
real-time -- thereby reducing waiting queues while enhancing service quality, informed by
consistent answers and considering all available network information in real time.

This article describes the steps service providers can use to build such a chatbot. It and drills into
the AI/ML elements in charge of performing installation diagnostics, predicting the behavior of
the systems and users, and pinpointing the root causes critical to fixing issues before they even
become visible to customers. These highly specialized AI/ML algorithms feed their propositions
into a decision engine (DE), so as to understand a much larger context, and apply game theory to
make optimal choices for the customer.

1. Chatbot Architecture
A chatbot is a computer program that provides an interface that allows customers to interact with
machine learning systems via auditory or textual methods. Through Chatbots, customers can
report service issues and get personalized answers or help, using the best knowledge of our
machine learning systems. Further, Chatbots can obviate the need for customers to navigate
websites or call for support. An overview of the Chatbot is provided in Figure 1.

Figure 1: Overview of ChatBot

A chatbot dialog unfolds as follows: A customer interacts, either by typing a query into a mobile
device, or by directly talking into a microphone which transmits the voice signal to a speech-to-
text algorithm to produce a script of the query. This query is analyzed by a Natural Language
Processing (NLP) module that extracts the intent of the customer. In some cases, these intents are
implicit in the query and need to be translated by NLP into an explicit statement, often
formulated in technical jargon. For example, a query like “it takes very long to download
images” might be translated into a more generic intent like “internet speed slow,” known in the
domain knowledge.

This intent is forwarded to the Machine Learning/AI domain for investigation. These ML/AI
algorithms have access to a wealth of information, such as high-speed internet data, in-home

WiFi data, and many kinds of system and video errors including RDK and XRE. Ideally, all of
this information is stored in a data lake, with nationwide coverage and a history duration
spanning over several months to years. These data lakes allow ML algorithms to learn the
customer behavior or performance of our current networks, and to extract salient events, called
“features,” which in turn enable algorithms to assess the situation of a customer through a kind
of fingerprinting.

One method used by ML to fix issues is actually to identify “error fingerprints” from the past and
learn how they were fixed. All things being equal, applying the same fix should solve the same
issue with high probability. Additionally, ML algorithms can predict future calls or issues that
customers are experiencing based on similar “fingerprints” seen in the past. Domain AI/ML
finally presents its diagnostics, predictions and recommendations of actions to the DE (decision
engine.)

The DE gets recommendations from domain AI/ML as input features. These recommendations
might be incoherent, in competition with or even in contradiction with each other, given that
they’re created by highly specialized ML algorithms -- each of which has a deep but narrow
understanding of the world. The DE aims to understand a larger context to select the right
decision.

In its simplest implementation, a DE can be implemented by a rules engine that can choose the
best solution for a problem. However, these rules engines are static solutions, and would
constantly need re-evaluations over time to make sure they still are optimal. A superior
implementation of the decision engine uses a recommendation system to take into consideration
larger context domains, along with domain knowledge, to continuously choose the optimal action
and fix the issue reported by the customer. Our particular implementation uses what’s called a
“multi-arm bandit algorithm.”

2. Introduction to Machine Learning
In this section, we define the machine learning algorithms used in this paper. Machine learning
algorithms try to learn the underlying patterns in data. Depending on the ways that ML
algorithms learn patterns, they are categorized into three families: supervised learning,
unsupervised learning and reinforcement learning.

2.1. Supervised Learning
Supervised learning is a guided learning approach, meaning that it learns the pattern of the data
that could optimally predict the provided labels. In our system, we use classifiers to discern
similarities and differences in data, and to assign them to categories based on similarity.
Examples of such classification algorithms include identifying objects in a video frame,
identifying the underlying sentiment in a customer service message, or associating a log message
from a set-top with a specific error class. The technologies powering classifiers range from the
simple -- decision trees and random forest algorithms-- to the very complex, such as deep neural
networks. The choice amongst available technologies is typically related to the level of
complexity and the number of features in the underlying data. Image classification, for instance,

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 5

has been shown to benefit greatly by neural networks and its derivative technologies, such as
convolutional neural nets.

2.2. Unsupervised Learning
In contrast to supervised learning, unsupervised learning aims to determine underlying patterns
without any sort of guidance or provided labels. In our system, we use clustering algorithms to
group similar data into clusters, and the clusters do not have any preset labels. They are typically
used to understand the behavior of data or to look for any significant deviations in data. For
example, clustering algorithms could be used to look at anonymized smart home data to build
user profiles, such as early risers, late risers etcetera, based on common behaviors. Clustering
algorithms range from the simple, such as k-means clustering, to the complex, like agglomerative
hierarchical clustering.

2.3. Reinforcement Learning
Reinforcement learning is a type of ML inspired by behavioral psychology, and concerned with
how software agents take actions in an environment so as to maximize some notion of
cumulative reward. Reinforcement learning is studied in many disciplines, including control
theory, game theory, simulation-based optimization, and more.

Reinforcement Learning is also directly applicable to the operations improvement in the cable
telecommunication industry, as our networks collectively qualify as complex systems to be
optimized, despite the impossibility of building a mathematical model of such a system. Early
implementations of reinforcement learning have been studied in optimal control theory to tackle
this very issue.

Reinforcement learning can also be used in gaming theory to select the best action to perform
while optimizing gains. For cable operators, this translates into selecting the best actions to
perform on an account, while minimizing the disruptions of service. Such an approach is used in
our Decision Engine.

3. Domain AI
Three domain-specific AI modules are under development:

• High Speed Data
• WiFi
• Video domain models including XRE, which stands for Cross-platform Runtime

Environment, and is a platform-independent protocol for distributed applications.

This paper describes the example of XRE. Three problems are assessed in this study. First, how
to react after an XRE error or a sequence of XRE appears on a device. Second, how can
consequences of such XRE errors or sequences be predicted, in terms of how important are they
to our customers, and how much they affect our service? Third, how can these errors be
prevented from happening in the future, and can problems be solved before they even surface?

3.1. XRE React: What to do after an XRE Error?
This first study investigates three actions that can be performed after observation of an XRE
error or a sequence of XRE errors for a single device during a time window of an hour. An
example of an XRE sequence for user a is a1= {XRE-03059, XRE-03059, XRE-10007}.
Whereas at the same time, user b might receive the sequence b1 = {XRE-10007}, and user c
might not receive any error during the time window, hence c1 = Æ. All of these sequences
represent fingerprints of the users’ statuses, and they can be used to perform predictions.

Three independent ML models are used to predict the effectiveness of three actions that may be
performed to fix the XRE errors (see Figure 2):

• System Refresh: account refresh + cable card refresh + firmware reset + reboot
• System Restart: simple box reboot
• Do Nothing: estimates the XRE error attrition over time, and recommends not to act

The goal of each of these actions is to eradicate the XRE errors. Success is claimed if there are
no errors in a duration of one hour after the action has been performed.

Figure 2: System Refresh, Restart and DoNothing models

For each of these actions, a supervised ML algorithm learns a classifier to organize samples into
two classes: Success or failure. During the prediction phase, new examples that have never been
seen are presented to the classifier, which will predict the probability of success of the action
(see Figure 3).

Figure 3: System Refresh and Restart Deployment Models

Current ML results allow the predicted performance of the system refresh model with 70% of
precision and 87% of recall, meaning that 70% of the recommended system refreshes

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 7

successfully eradicate the XRE errors, and 87% of the effective system refreshes are captured by
the ML model. See a visual representation of precision and recall in
Error! Reference source not found..

Similarly, the ML results predict the performance of a system restart
model with a precision of 84% and a recall of 99%.

The outputs of these models are stored in a repository for assessing
their validities when the actions, system refresh or restart, are
performed. These actions can either be performed by the customers,
or by reinforcement learning models executing the ML
recommendation directly. The reinforcement learning models can
check the validities of the actions immediately for self-calibration. In
essence, reinforcement learning is comparable to a feedback loop in
control systems.

3.2. XRE Predict: Who needs our help now?
Comcast measures customer satisfaction by using the Net Promoter
Score (NPS). NPS scores send a very clear message regarding the number of interactions
required to fix an issue. Customers are fairly happy when systems work flawlessly or get
repaired before having to call. First call resolutions are generally well accepted, but mark a dip in
NPS. Given the impact of repeat interactions on NPS scores, it makes much sense to study the
severity of the XRE fingerprints in aiming to predict and later preempt the customer calls.

3.2.1. Call Predictions
The call prediction scenario for ML is similar to the previous example, as it also uses supervised
learning. In this case, ML learns to predict the calls based on XRE errors that occurred over 24
hours. The modeling of these errors is also more precise, as it records each of the errors into
hourly buckets. In Figure 5, the studied device received {11 XRE-00021, 5 XRE-03056, 33
XRE-03059} at 15:00, {7 XRE-00021, 5 XRE-03056, 22 XRE-03059} at 16:00, etc. The goal of
the ML is to differentiate the callers from the non-callers based on these XRE models, and, given
a new sequence the ML algorithm never encountered before, predict if this customer will call.

Figure 4:
Precision, Recall

Figure 5: Call Predictions Model Flow and Results

The ML model predicted 64% of the calls that will happen, which is quite a valuable result
because the learning sets are unbalanced -- meaning there are very few callers as compared to
non-callers. But the most exploitable result of this study is the high accuracy in predicting a call.
If the ML predicts a call, it is wrong in less than 1% of the cases. However, the algorithm only
catches nine percent of the total number of calls. This result is interesting in the sense that we
can predict some calls with a very high accuracy, and thus are poised to preempt these calls by
fixing the underlying issues.

3.2.2. Silent Sufferers
Previous methods used for detecting quality of service issues are typically based on user
feedback, gathered through chats and calls. Implicitly this means that no news means all is right,
right? Wrong.

There exists a small category of customers who never use our communication channels, even
while facing issues. Hence, they are called silent sufferers. These customers are undetectable
with previous methods, they are unaccounted for in NPS, and user histories indicate that silent
sufferers often unsubscribe without ever calling.

No supervised learning method can address silent sufferers. We present instead the use of an
unsupervised ML method. The design principle is to introduce a distance measurement between
users. The ML measures a fingerprint of a single XRE error over a 24-hour period of time. The
unsupervised method used is the k-means algorithm, clustering users into classes of similarity
according to this fingerprint measurement. Experiments show that 90% of the users are clustered
into the main class (see Figure 6). The devices of these users show a nominal behavior where
everything works fine, up to specification. Other classes are called outliers, which group similar
users. Some of these classes prove to have a nominal behavior whereas others might face unusual
behaviors, for example, degraded service. These classes are called the sufferer classes.

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 9

Figure 6: Initial Clusters

We defined several types of logic to combine the classes of sufferers across different XRE errors
into meta-classes, so as to reinforce the predictive power of the weak predictor classes. Such
results are described in Figure 7. Since the k-means algorithm performs clustering regardless of
calls, the resulting meta-classes of sufferers contain, in general, both callers and silent sufferers.
For each of these classes independently, an algorithm studies the causes mentioned by the callers
to gather a better understanding of this class. The knowledge acquired through the callers is
shared to the silent sufferers and allows action on their issues without having them to ever call.

Figure 7: Meta Clusters with callers and silent sufferers

3.3. XRE Prevent: Can we solve the problems before they surface?
The best way to prevent XRE errors is to understand their root causes and to tackle them before
they can propagate and morph into customer-impacting XRE errors. It can be done with
supervised learning but requires advanced feature engineering, because such models rely on a
number of data sources of different natures/semantics. In particular see Figure 8:

• Hardware data: XRE telemetry, RDK telemetry, xFi data transfer telemetry
• Networking data: Spectra data in the cable, WOPR, PHT data
• Application data: XRE messages
• Behavioral data: Anonymized click and tune data generated by users.

In a first approach, these data were bucketed hourly, in the same manner as in 3.2.1. Because of
the large number and the heterogeneity of the data sources, this approach is unlikely to work
because of the different sampling rates in each of these data sources. Some of the data are
sampled hourly while others are sampled at the micro-second level (e.g. the clicks and tunes). By
using an hour as the common denominator, the millisecond-rate information of the clicks and
tunes is washed away, and the clicks and tunes lose most of their precious information.

To overcome such difficulties, we developed our own asynchronous sampling methods into our
models, inspired by [3]. Asynchronous sampling allows the capture of all the information
without using buckets.

Figure 8: Root Cause Analysis and Asynchronous Sampling

4. Decision Engine (DE)
Each of the `depth-first’ domain AI algorithms provides recommendations based on their narrow
but deep understanding of the building blocks of a cable operator’s infrastructure. The decision
engine operates in a `breadth-first’ fashion: It is in charge of collecting these recommendations,
their contexts, the user’s intent and making sense of it all, to execute the best actions that will
improve the customer experience.

4.1. Overview
Figure 9 gives an overview of the decision engine workflow. The customer intent is acquired
through the NLP module; the customer context is acquired through a virtual assistant guiding
users in the resolution of their tasks; the customer’s experience is provided by the domain AI
algorithms presented earlier -- they analyze many sources of raw data, perform a diagnostic of
the situation and propose actions to fix issues. Together, the customer’s intent, context and
experience form the overall context or state of the environment. Given this state, the job of the
decision engine is to take the right action at the minimal cost. In the process, it might have to
make trade-offs between the actions proposed by the domain AI, as some of these actions,
though successful, might come at a cost in terms of user impact (see details in Figure 2). For

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 11

example, the restart of a set top box takes about 7 minutes, whereas the more powerful refresh
operation fixes potentially more issues but can take (worst case) up to 20 minutes. In some cases,
the domain AI even calculates the natural error attrition of the system and suggests not to
perform any action, so as to not adversely impact the user.

Figure 9: Decision Engine Data Flow

For a given context, the decision engine consults its action catalog, assesses the benefits and
costs of the actions, and finds the best tradeoff to fulfill the customer’s intents. In reinforcement
learning terminology, the decision engine takes as input a state (or context), and predicts the best
action(s) to take so as to minimize cost (or maximize reward).

4.2. Multi-Armed Bandit (MAB) Algorithm Overview
The operation of the decision engine is driven by the
multi-armed bandit (MAB) algorithm [1], which is
widely used for single-step decision-making problems.
The name `multi-armed bandit’ references a gambler
(generally, a bandit) at a casino with several arms, trying
to play the right slot machines so as to optimize their
winnings.

MAB is often depicted in cartoons as an octopus in front
of several slot machines (each assumed to provide a
specific payout) and trying to use its several arms to
determine the slot machine that provides the highest
payout.

An intrinsic characteristic of MAB algorithms is the `exploration/exploitation’ tradeoff. In the
context of the slot machine payout, this is what the terms mean:

• Exploitation: play the machine believed to have the highest payout
• Exploration: play untested machines to learn if there are higher-paying ones

Thus, the best long-term strategy may involve short-term sacrifices. The octopus will need to
explore pulling the levers of several machines before it can start to exploit the best one.

4.3. Linear Contextual MAB: Introduction
Here, we used a `linear’ version of the MAB algorithm, which is depicted in Figure 10. Given a
context, the linear MAB uses several linear regression models (one for each action) to predict the
reward for the (state, action) pair. Specifically, for each training sample comprising state, action
and the corresponding reward, the linear contextual MAB trains a linear regression model that
maps state to reward. Note that with the data sample comprising action index `k’, only the action
model `k’ is trained. At test (inference) time, the bandit algorithm predicts the reward for each
action model and thus can rank the actions based on the rewards yielded. Picking the best action
all the time creates the exploitation scenario. Exploration is achieved by either using an upper
confidence bound on the regression fit or using an e-greedy policy, which is a way of selecting
random actions with uniform distribution from a set of available actions.

Figure 10: Linear MAB Machine Learning Flow

In general, the linear regression models may be replaced by any ML model, such as random
forest, fully connected networks or generic neural networks, to create non-linear versions of the
bandit architecture.

4.4. Linear Contextual MAB on the XA App: Experimental Setup
We now present the results on the linear MAB policy evaluation. This experiment was conducted
using data gleaned from the Xfinity Assistant (XA) app. The problem was to correctly present
the actions (or buttons) to a customer, on the XA app, that s/he would most likely click on while
navigating through the app. The more relevant the presented actions are, the more engaged the
customer will be, and the more likely his/her question or concern is successfully addressed.

The state, action, and reward details for this problem is described below.

State: We used the raw data from both the XA app logs and context services data. The context
services data contains anonymized and individualized information such as service mix,

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 13

appointment events and present and future outage information. From this raw data, we extracted
features to use as state (context) for our linear regression models.

Reward: In the XA logs, we used the following scheme to assign rewards to buttons. In the set
of presented buttons,

• If the user clicked any of the buttons, that specific button gets a reward of +1.0, and other
presented buttons get rewarded +0.5.

• If the user did not click on any button (which may happen if the user uttered something
else or abandoned/closed the app), all buttons get rewarded -1.0.

Action: There are over 300 types of buttons in the button catalog. We only considered the 100
most frequently occurring buttons as our actions, and grouped all remaining actions into another
action bucket. This means, in the context of Error! Reference source not found., we would be
training 101 action models, i.e., K = 101.

4.5. Linear Contextual MAB on the XA App: Policy Evaluation Results
Given the data represented by the (state, action, tuple) pairs, we can provide results on training
and policy evaluation [2]. In order to study how the bandit algorithm learns over time, we used
the following methodology: In each iteration, we trained the bandit on 25,000 data samples and
subsequently evaluated it on 2,500 test samples. We repeated this for roughly 1,000 iterations
(which equates to one epoch for the amount of data we have). For evaluating the policy, we used
the following unbiased offline evaluation methodology: When the action chosen by the algorithm
matches the action chosen by the user in the data log, we add the corresponding reward.
Otherwise, the data sample is ignored.

Figure 11 plots the net rewards obtained by the linear MAB over time. The increasing overall
reward means that the algorithm is learning to explore and exploit the various patterns in the data
over time. When we examined more closely into the positive and negative rewards that make up
the net rewards (see Figure 12), we noticed that the algorithm was attempting to increase the
positive rewards and avoid the negative ones, which is what we desired.

Figure 11: Linear MAB Policy Evaluation: Net Rewards

Figure 12: Linear MAB Policy Evaluation: Positive (left) and Negative (right)
Rewards

Conclusion
The AI/ML building blocks described in this paper are currently being tested in a production
environment, and some of the early results presented here have been obtained on live data. These
results are encouraging and show that the productization of the whole Chatbot is just a matter of
time.

There is actually a good fit between existing AI/ML methods and the cable telecommunication
industry. We generate an overwhelming wealth of data, the interpretation of which far exceeds
human capabilities. Our current AI/ML methods are barely scratching the surface of the possible,
and focus on low hanging fruit to equal the performance of existing customer care. The example
of the silent sufferers described in this paper is just an illustration of a case where AI/ML can
reach beyond existing human resources to detect issues that are invisible to the human eye and
simple query/filter systems or supervised learning. Unsupervised and reinforcement learning is
well positioned to open new and radically beneficial frontiers in the operational transformation
of the cable telecommunication industry.

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 15

Abbreviations
AI artificial intelligence
DE decision engine
HSD high speed data
MAB multi-armed bandit
ML machine learning
NLP natural language processing
NPS net promoter score
RDK reference design kit, http://rdkcentral.com/
XA App Xfinity assistant app
XRE cross-platform Runtime Environment

Bibliography & References
1. L. Li, W. Chu, J. Langford, and R. E. Schapire, ``A Contextual-Bandit Approach to

Personalized News Article Recommendation,‘’ In the 19th International Conference on
World Wide Web (WWW), 2010.

2. L. Li, Wei Chu, John Langford, and Xuanhui Wang, ``Unbiased Offline Evaluation of
Contextual-Bandit-based News Article Recommendation Algorithms,‘’ In the 4th ACM
International Conference on Web Search and Data Mining (WSDM), 2011.

3. Binkowski, Mikolaj, Gautier Marti, and Philippe Donnat. "Autoregressive Convolutional
Neural Networks for Asynchronous Time Series." 2018.

