
A K-Fold method

for Baseline

estimation in

Policy Gradient

algorithms

Copyright © 2016 Samsung SDS America, Inc. All rights reserved

AGENDA

• What is Reinforcement Learning?

• What are policy gradient algorithms?

• What is a Baseline?

• Current Baseline estimation issues.

• K-Fold method for Baseline estimation.

• Experimental Results.

Sunil
Srinivasa

Nithyanand
Kota

Abhishek
Mishra

Presented at 2016 NIPS
Deep RL Workshop

Reinforcement Learning (RL)

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• Agent learns from repeated interactions with environment.

• The goal is to determine the set of actions that maximize cumulative reward

(also called return).

• Has seen tremendous practical success of late:

• Autonomous vehicles

• Google datacenter PUE

• Robotic control

• Alpha-go, ATARI games

Policy Gradient Algorithms

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• The agent’s behavior is called policy, which is a mapping from state to

action. Typically, the policy is represented as a deep network

parameterized by 𝜃.

• The expected return 𝐸𝑠,𝑎[𝑅𝜃(𝑠, 𝑎)] is notated simply as 𝐽(𝜃), which needs

to be maximized.

• PG algorithms simply use the gradient of the return 𝛻𝜃𝐽(𝜃) to optimize the

policy parameters 𝜃 directly.

Policy Gradient Algorithms (Contd.)

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• The policy gradient 𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝐸𝑠,𝑎[𝑅𝜃(𝑠, 𝑎)]

• Policy gradient algorithms search for a local maximum in 𝐽 𝜃 by ascending

the gradient of the policy w.r.t the parameters 𝜃 iteratively, for e.g., in

Vanilla Policy Gradient (VPG):

• 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝛻𝜃𝐽(𝜃), where 𝛼 is a step-size parameter.

• The PG 𝛻𝜃𝐽 𝜃 is estimated in practice via Monte Carlo (MC) methods.

• Though the MC estimates are unbiased, they suffer from high variance.

• This means the convergence time of the algorithm becomes very large.

Baseline

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• In order to reduce the variance in the PG estimates, a baseline b is added.

• 𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝐸𝑠,𝑎[𝑅𝜃 𝑠, 𝑎 − 𝑏(𝑠)]

• Typically, 𝑏 𝑠 = 𝑉(𝑠), the state-value function, which is the expected

return starting from state s.

• This is somewhat optimal in terms of reducing the variance of PG.

• In practice, the baseline is estimated using a regression on (fitting) states

versus the returns obtained starting from those states.

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential.

State

Policy network

Train a Baseline network

Action

Return

Environment
NextState

Return

Policy Gradient

Algorithms, e.g., VPG

𝜃𝑘

𝜃𝑘+1

Collect a lot of

(state, return) data

State

1

2

Update the policy parameters 3

Return,

Baseline

What happens in each iteration?

Case 1: Baseline fitting is performed in iteration 𝒌 and the baseline

is used for computing PG in iteration 𝒌

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• This causes the baseline fit to become biased towards the states and returns that are

collected for fitting.

• In the extreme case, if we have only one return data sample coming from each state,

and if the baseline fits this data perfectly, the PG would be zero.

Case 2: Baseline fitting is performed in iteration 𝒌 − 𝟏 and the

baseline is used for computing PG in iteration 𝒌.

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• When the policy changes drastically between iterations, the baseline can be

a poor estimate of the state-value function, resulting in a poor fitting.

• If the policy doesn’t change by much, the learning will be slow.

Iteration 𝑘 − 1
Iteration 𝑘

K-fold method for Baseline estimation

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• Break the data samples (states and rewards) into 𝑲 partitions

• For each partition, a baseline is trained using data from all the other

partitions, and the same baseline is used for predicting the value function

for the current partition.

Illustration for 𝐾 = 2

K-fold method for Baseline estimation (Contd.)

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• Since we do not directly fit on `the current partition’s data samples, we also avoid

the issue of gradient becoming small and quicken learning (case 1) .

• Since the baseline fitting is performed using samples from the current policy, we

mitigate the problem of poor fitting (case 2).

• 𝑲 is a hyper-parameter that trades-off between case 1 (𝐾 = 𝑑𝑎𝑡𝑎_𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒)

and case 2 (𝐾 =1).

• By varying 𝐾, we can potentially quicken learning and improve performance.

• The optimal value of 𝐾 may be found using standard hyper-parameter tuning

techniques.

K-fold method for Baseline estimation (Contd.)

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• Since the 𝐾-fold method operates on 𝐾 partitions of the data, we obtain

• 𝐾 different baselines and therefore, 𝐾 different policy gradients,

How do we combine them to update the parameters 𝜃?

• Recall: 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝛻𝜃𝐽(𝜃),

where 𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝐸𝑠,𝑎[𝑅𝜃(𝑠, 𝑎)].

• Now, we have 𝛻𝜃𝐽1(𝜃), 𝛻𝜃𝐽2(𝜃), … , 𝛻𝜃𝐽𝐾(𝜃) – one from each partition.

• There are at least two different ways to perform policy optimization:

• Parameter-based: Average the updated parameters across the partitions to

obtain the policy’s new parameters.

• Gradient-based: Average the PG across the partitions, and use the

averaged gradient to obtain the policy’s new parameters.

Method 1: Averaging the policy parameters

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

Method 2: Averaging the gradients

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

Environments

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

Walker Hopper Cheetah

Make a bipedal robot

walk forward as fast as

possible.

21-D state space

6 actuated joints

Make a one-legged robot

hop forward as fast as

possible.

20-D state space

3 actuated joints

Make a two-legged robot

run forward as fast as

possible.

20-D state space

6 actuated joints

Experimental setup

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• Policy network: feed-forward Multi-layer Perceptron

 (MLP) with 3 hidden layers of sizes 100, 50 and 25,

 and tanh nonlinearity after the first two layers.

 The policy network maps states to the mean of a Gaussian distribution.

• Baseline network: feed-forward MLP with 2 hidden layers of size 32 each.

The baseline uses ADAM first-order optimization method.

• Two policy gradient algorithms:

• TRPO: Trust Region Policy Optimization

• TNPG: Truncated Natural Policy Gradient.

• K = 1, 2 and 4

Return State

32 32

State

100
50

25

Action

Results with Walker

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

Walker with TRPO, and a

data size of 50000

Lower variance

Walker with TNPG, and a

data size of 5000

Stable learning

Results with Hopper

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

Hopper with TRPO, and a

data size of 50000

Significantly faster learning

Hopper with TNPG, and a

data size of 5000

Improved performance

Result Tables

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

Numbers indicate mean±std of the obtained returns.

The numbers with the best lower bound, i.e., highest mean-std are in bold face.

Summary

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• Proposed K-fold method provides an additional degree of freedom to

further the performance of Policy Gradient algorithms.

• Our algorithms exhibit promising performance improvements on robotic

tasks, and with two policy gradient algorithms.

• The K-fold method is generic enough to be used with any policy gradient

algorithm such as VPG/TRPO/TNPG.

• Interesting to study the benefit with the K-fold method applied to other

practical environments and policy gradient algorithms.

Acknowledgements

Copyright © 2016 Samsung SDS America, Inc. All rights reserved. Confidential

• Thanks to our collaborators from open AI and UC Berkeley, Xi (Peter) Chen

and Pieter Abbeel.

• Thanks to Girish Kathalagiri and Aleksander Beloi for their help during

various stages of this work.

• Thanks to Luis Carlos Quintela and Atul Varshneya for their suggestions

and feedback.

• Workshop website: https://sites.google.com/site/deeprlnips2016/

