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Reinforcement Learning (RL) 
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• Agent learns from repeated interactions with environment. 

• The goal is to determine the set of actions that maximize cumulative reward 

(also called return). 

• Has seen tremendous practical success of late: 

• Autonomous vehicles 

• Google datacenter PUE 

• Robotic control 

• Alpha-go, ATARI games 



Policy Gradient Algorithms 
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• The agent’s behavior is called policy, which is a mapping from state to 

action. Typically, the policy is represented as a deep network 

parameterized by 𝜃. 

 

 

 

 

 

 

• The expected return 𝐸𝑠,𝑎[𝑅𝜃(𝑠, 𝑎)] is notated simply as 𝐽(𝜃), which needs 

to be maximized. 

 

• PG algorithms simply use the gradient of the return 𝛻𝜃𝐽(𝜃) to optimize the 

policy parameters 𝜃 directly. 



Policy Gradient Algorithms (Contd.) 
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• The policy gradient 𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝐸𝑠,𝑎[𝑅𝜃(𝑠, 𝑎)] 

 

• Policy gradient algorithms search for a local maximum in 𝐽 𝜃  by ascending 

the gradient of the policy w.r.t the parameters 𝜃 iteratively, for e.g., in 

Vanilla Policy Gradient (VPG): 

• 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝛻𝜃𝐽(𝜃), where 𝛼 is a step-size parameter. 

 

• The PG 𝛻𝜃𝐽 𝜃  is estimated in practice via Monte Carlo (MC) methods. 

• Though the MC estimates are unbiased, they suffer from high variance. 

• This means the convergence time of the algorithm becomes very large. 



Baseline 
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• In order to reduce the variance in the PG estimates, a baseline b is added. 

• 𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝐸𝑠,𝑎[𝑅𝜃 𝑠, 𝑎 − 𝑏(𝑠)] 

 

• Typically, 𝑏 𝑠 = 𝑉(𝑠), the state-value function, which is the expected 

return starting from state s. 

• This is somewhat optimal in terms of reducing the variance of PG. 

 

• In practice, the baseline is estimated using a regression on (fitting) states 

versus the returns obtained starting from those states. 
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Case 1: Baseline fitting is performed in iteration 𝒌 and the baseline 

is used for computing PG in iteration 𝒌 
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• This causes the baseline fit to become biased towards the states and returns that are 

collected for fitting. 

• In the extreme case, if we have only one return data sample coming from each state, 

and if the baseline fits this data perfectly, the PG would be zero. 



Case 2: Baseline fitting is performed in iteration 𝒌 − 𝟏 and the 

baseline is used for computing PG in iteration 𝒌. 
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• When the policy changes drastically between iterations, the baseline can be 

a poor estimate of the state-value function, resulting in a poor fitting. 

• If the policy doesn’t change by much, the learning will be slow. 

Iteration 𝑘 − 1  
Iteration 𝑘 



K-fold method for Baseline estimation 
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• Break the data samples (states and rewards) into 𝑲 partitions 

 

• For each partition, a baseline is trained using data from all the other 

partitions, and the same baseline is used for predicting the value function 

for the current partition. 

Illustration for 𝐾 = 2 



K-fold method for Baseline estimation (Contd.) 
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• Since we do not directly fit on `the current partition’s data samples, we also avoid 

the issue of gradient becoming small and quicken learning (case 1) . 

 

• Since the baseline fitting is performed using samples from the current policy, we 

mitigate the problem of poor fitting (case 2). 

 

• 𝑲 is a hyper-parameter that trades-off between case 1 (𝐾 = 𝑑𝑎𝑡𝑎_𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒) 

and case 2 (𝐾 =1). 

 

• By varying 𝐾, we can potentially quicken learning and improve performance. 

 

• The optimal value of 𝐾 may be found using standard hyper-parameter tuning 

techniques. 



K-fold method for Baseline estimation (Contd.) 
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• Since the 𝐾-fold method operates on 𝐾 partitions of the data, we obtain 

• 𝐾 different baselines and therefore, 𝐾 different policy gradients, 

How do we combine them to update the parameters 𝜃? 

 

• Recall: 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝛻𝜃𝐽(𝜃), 

where 𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝐸𝑠,𝑎[𝑅𝜃(𝑠, 𝑎)]. 

 

• Now, we have 𝛻𝜃𝐽1(𝜃), 𝛻𝜃𝐽2(𝜃), … , 𝛻𝜃𝐽𝐾(𝜃) – one from each partition. 

 

• There are at least two different ways to perform policy optimization: 

• Parameter-based:  Average the updated parameters across the partitions to 

obtain the policy’s new parameters. 

• Gradient-based: Average the PG across the partitions, and use the 

averaged gradient to obtain the policy’s new parameters. 



Method 1: Averaging the policy parameters 
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Method 2: Averaging the gradients  
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Environments 
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Walker Hopper Cheetah 

Make a bipedal robot 

walk forward as fast as 

possible. 

 

21-D state space 

6 actuated joints 

Make a one-legged robot 

hop forward as fast as 

possible. 

 

20-D state space 

3 actuated joints 

Make a two-legged robot 

run forward as fast as 

possible. 

 

20-D state space 

6 actuated joints 



Experimental setup 
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• Policy network: feed-forward Multi-layer Perceptron 

    (MLP) with 3 hidden layers of sizes 100, 50 and 25,  

    and tanh nonlinearity after the first two layers. 

    The policy network maps states to the  mean of a Gaussian distribution. 

 

• Baseline network: feed-forward MLP with 2 hidden layers of size 32 each. 

The baseline uses ADAM first-order optimization method. 

 

• Two policy gradient algorithms: 

• TRPO: Trust Region Policy Optimization 

• TNPG: Truncated Natural Policy Gradient. 

 

• K = 1, 2 and 4 

Return State 

32 32 
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Action 



Results with Walker 
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Walker with TRPO, and a 

data size of 50000 

Lower variance 

Walker with TNPG, and a 

data size of 5000 

Stable learning 



Results with Hopper 
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Hopper with TRPO, and a 

data size of 50000 

Significantly faster learning 

Hopper with TNPG, and a 

data size of 5000 

Improved performance 



Result Tables 
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Numbers indicate mean±std of the obtained returns. 

The numbers with the best lower bound, i.e., highest mean-std are in bold face. 



Summary 
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• Proposed K-fold method provides an additional degree of freedom to 

further the performance of Policy Gradient algorithms. 

 

• Our algorithms exhibit promising performance improvements on robotic 

tasks, and with two policy gradient algorithms. 

 

• The K-fold method is generic enough to be used with any policy gradient 

algorithm such as VPG/TRPO/TNPG. 

 

• Interesting to study the benefit with the K-fold method applied to other 

practical environments and policy gradient algorithms. 
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