A K-Fold Method for Baseline Estimation in Policy Gradient Algorithms Presented by Aleksander Beloi, Samsung SDS Research America

ABSTRACT

Baseline helps reduce variance in unbiased policy gradient algorithms such as REINFORCE, VPG and TRPO. However, baseline fitting itself suffers from

- *Underfitting*: When the policy changes drastically between iterations
- *Overfitting*: When the current data is used to fit the baseline

We propose a *K*-fold method for baseline estimation that can be used as a tuning parameter to adjust the biasvariance trade-off.

POLICY GRADIENT ALGORITHM

Parameter update loop:

- 1: Sample *M* trajectories $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, ...)$ using policy $\pi(a|s,\theta)$
- 2: Estimate the policy gradient $\mathbf{g}_{\theta} = \nabla_{\theta} \mathbf{E}_{\tau} [R(\tau) b(\tau)]$ from sample data, where $R(\tau) = \sum_{i} \gamma^{i} r_{i}$ and $b(\tau)$ is a baseline function independent of θ .
- 3: Update the policy parameters using the policy gradients: $\theta \leftarrow \theta + \alpha \cdot \mathbf{g}_{\theta}$.

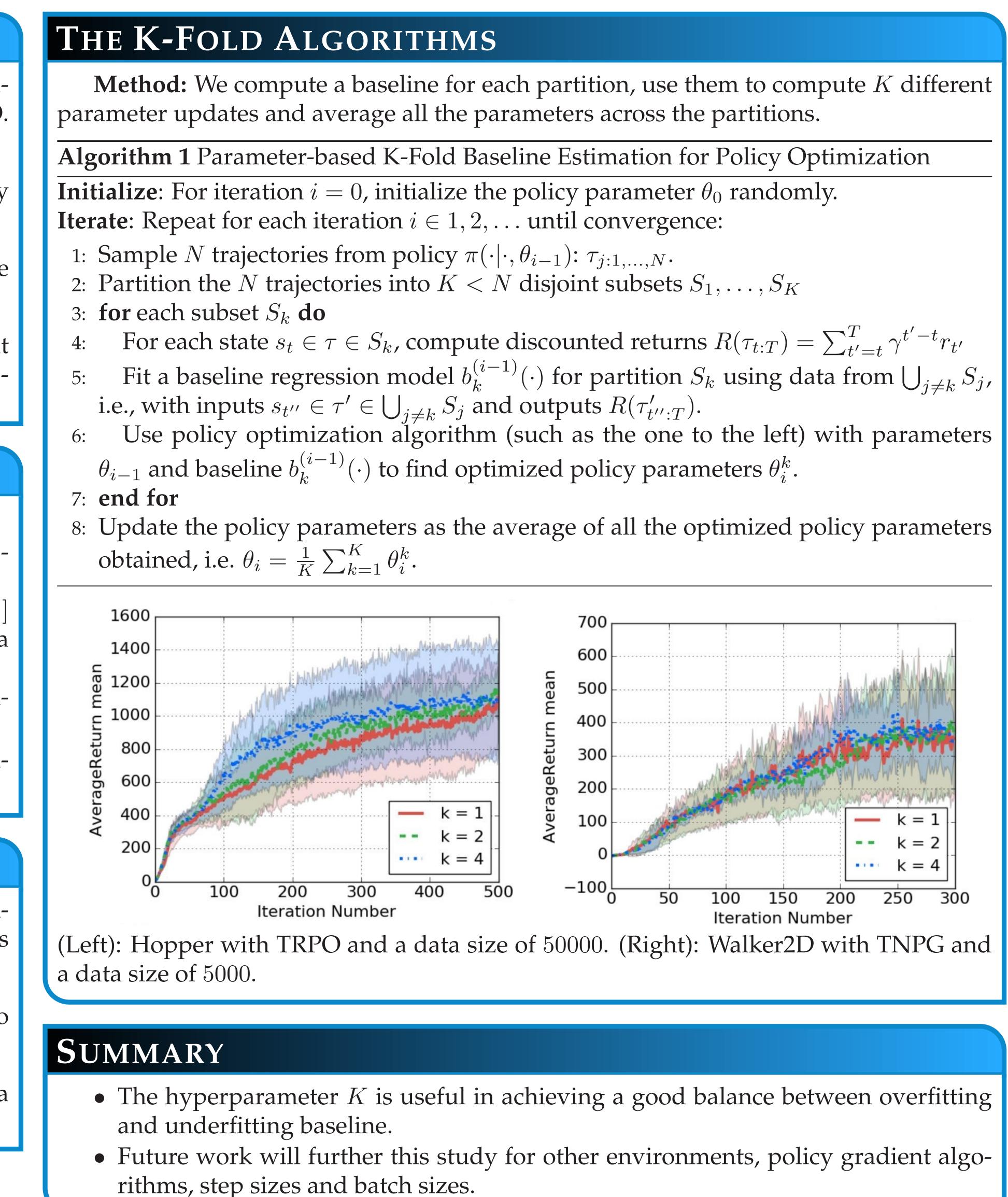
Baseline is used to **reduce variance** in gradient approximation step (2)

K-FOLD METHOD

The *K*-fold method operates by breaking the data samples into *K* partitions. For each partition, a baseline is computed using data from all the other partitions.

- The fitting uses samples from the current policy, so we mitigate underfitting.
- We do not directly fit on the current partition's data samples, so we also mitigate overfitting.

SAMSUNG SDS AMERICA



Nithyanand Kota[†], Abhishek Mishra[†], Sunil Srinivasa[†] Samsung SDS Research America [†]These authors contributed equally. {n.kota, a2.mishra, s.srinivasa}@samsung.com

EXPERIMENT SETUP

We use 5 random starting seeds and report the performance averaged over all the seeds.

- Gaussian distribution.

EXPERIMENTAL FINDINGS

Walker

Method 1 with TRPO and data size of 50,000.					
Task	K = 1	K = 2	K = 4		
Walker	911.0 ± 681.0	1015.7 ± 327.3	938.7 ± 462.1		
Hopper	727.7 ± 242.6	723.7 ± 190.5	$\boxed{\textbf{721.4} \pm \textbf{149.5}}$		
Cheetah	1595.1 ± 404.4	1528.5 ± 406.6	1383.8 ± 356.1		

Method 2 with TRPO and data size of 50,000.					
Task	K = 1	K = 2	K = 4		
Walker	911.0 ± 681.0	1035.0 ± 491.1	1092.8 ± 401.2		
Hopper	727.7 ± 242.6	$\textbf{786.0} \pm \textbf{171.1}$	847.7 ± 274.0		
Cheetah	1595.1 ± 404.4	1664.1 ± 337.1	1676.1 ± 333.4		

Method 2 with TNPG and data size of 5,000.				
Task	K = 1	K = 2	K = 4	
Walker	299.4 ± 154.0	316.6 ± 164.6	336.7 ± 91.9	
Hopper	331.4 ± 42.6	317.3 ± 29.5	344.7 ± 31.9	
Cheetah	609.5 ± 215.3	445.9 ± 228.8	445.9 ± 181.9	

OpenA

Xi (Peter) Chen, Pieter Abbeel OpenAI UC Berkeley, Department of EECS {peter, pieter}@openai.com

• Performance Metrics: We define performance as the area under the average return curve.

• Policy Network (Stochastic): We use a feedforward MLP network with 3 hidden layers of sizes 100, 50 and 25 with tanh nonlinearities after the first two hidden layers that maps states to the mean of a

• **Baseline:** We use a Gaussian MLP for the baseline as well, with 2 hidden layers of size 32 each. The baseline is fitted using 10 ADAM steps.

Hopper

Half-Cheetah

