
1.5em

A K-Fold Method for Baseline Estimation in Policy Gradient Algorithms
Presented by Aleksander Beloi, Samsung SDS Research America

ABSTRACT
Baseline helps reduce variance in unbiased policy gra-

dient algorithms such as REINFORCE, VPG and TRPO.
However, baseline fitting itself suffers from

• Underfitting: When the policy changes drastically
between iterations

• Overfitting: When the current data is used to fit the
baseline

We propose a K-fold method for baseline estimation that
can be used as a tuning parameter to adjust the bias-
variance trade-off.

POLICY GRADIENT ALGORITHM
Parameter update loop:

1: SampleM trajectories τ = (s0, a0, r0, s1, a1, r1, . . .) us-
ing policy π(a|s, θ)

2: Estimate the policy gradient gθ = ∇θEτ [R(τ) − b(τ)]
from sample data, where R(τ) =

∑
i γ

iri and b(τ) is a
baseline function independent of θ.

3: Update the policy parameters using the policy gradi-
ents: θ ← θ + α · gθ.

Baseline is used to reduce variance in gradient approxi-
mation step (2)

K-FOLD METHOD
The K-fold method operates by breaking the data sam-
ples into K partitions. For each partition, a baseline is
computed using data from all the other partitions.

• The fitting uses samples from the current policy, so
we mitigate underfitting.

• We do not directly fit on the current partition’s data
samples, so we also mitigate overfitting.

THE K-FOLD ALGORITHMS
Method: We compute a baseline for each partition, use them to compute K different

parameter updates and average all the parameters across the partitions.

Algorithm 1 Parameter-based K-Fold Baseline Estimation for Policy Optimization
Initialize: For iteration i = 0, initialize the policy parameter θ0 randomly.
Iterate: Repeat for each iteration i ∈ 1, 2, . . . until convergence:

1: Sample N trajectories from policy π(·|·, θi−1): τj:1,...,N .
2: Partition the N trajectories into K < N disjoint subsets S1, . . . , SK
3: for each subset Sk do
4: For each state st ∈ τ ∈ Sk, compute discounted returns R(τt:T ) =

∑T
t′=t γ

t′−trt′

5: Fit a baseline regression model b(i−1)k (·) for partition Sk using data from
⋃
j 6=k Sj ,

i.e., with inputs st′′ ∈ τ ′ ∈
⋃
j 6=k Sj and outputs R(τ ′t′′:T ).

6: Use policy optimization algorithm (such as the one to the left) with parameters
θi−1 and baseline b(i−1)k (·) to find optimized policy parameters θki .

7: end for
8: Update the policy parameters as the average of all the optimized policy parameters

obtained, i.e. θi = 1
K

∑K
k=1 θ

k
i .

(Left): Hopper with TRPO and a data size of 50000. (Right): Walker2D with TNPG and
a data size of 5000.

EXPERIMENT SETUP
We use 5 random starting seeds and report the perfor-
mance averaged over all the seeds.

• Performance Metrics: We define performance as
the area under the average return curve.

• Policy Network (Stochastic): We use a feed-
forward MLP network with 3 hidden layers of sizes
100, 50 and 25 with tanh nonlinearities after the first
two hidden layers that maps states to the mean of a
Gaussian distribution.

• Baseline: We use a Gaussian MLP for the baseline
as well, with 2 hidden layers of size 32 each. The
baseline is fitted using 10 ADAM steps.

EXPERIMENTAL FINDINGS

Walker Hopper Half-Cheetah

Method 1 with TRPO and data size of 50,000.
Task K = 1 K = 2 K = 4

Walker 911.0± 681.0 1015.7± 327.3 938.7± 462.1
Hopper 727.7± 242.6 723.7± 190.5 721.4± 149.5
Cheetah 1595.1± 404.4 1528.5± 406.6 1383.8± 356.1

Method 2 with TRPO and data size of 50,000.
Task K = 1 K = 2 K = 4

Walker 911.0± 681.0 1035.0± 491.1 1092.8± 401.2
Hopper 727.7± 242.6 786.0± 171.1 847.7± 274.0
Cheetah 1595.1± 404.4 1664.1± 337.1 1676.1± 333.4

Method 2 with TNPG and data size of 5,000.
Task K = 1 K = 2 K = 4

Walker 299.4± 154.0 316.6± 164.6 336.7± 91.9
Hopper 331.4± 42.6 317.3± 29.5 344.7± 31.9
Cheetah 609.5± 215.3 445.9± 228.8 445.9± 181.9

SUMMARY
• The hyperparameter K is useful in achieving a good balance between overfitting

and underfitting baseline.
• Future work will further this study for other environments, policy gradient algo-

rithms, step sizes and batch sizes.

Nithyanand Kota†, Abhishek Mishra†, Sunil Srinivasa† Xi (Peter) Chen, Pieter Abbeel
Samsung SDS Research America OpenAI
†These authors contributed equally. UC Berkeley, Department of EECS

{n.kota, a2.mishra, s.srinivasa}@samsung.com {peter, pieter}@openai.com


