
1

Technical Report for Superposition Coding

Strategies: Design and Experimental Evaluation
Z. Gong, M. Haenggi, S. Srinivasa, K. Stamatiou, S. Vanka, P. Vizi

Abstract

We design and implement a software-radio sytem for Superposition Coding (SC), a multiuser transmission scheme

that deliberately introduces interference among user signals at the transmitter, using a library of off-the-shelf point-

to-point channel codes. We experimentally determine the set of rate-pairs achieved by this transmission scheme under

a packet-error constraint. Our results suggest that SC can provide substantial gains in spectral efficiencies over those

achieved by orthogonal schemes such as Time Division Multiplexing. Our findings also question the practical utility

of the Gaussian approximation for the inter-user interference in Superposition-Coded systems.

Keywords—Superposition Coding, Software-Defined Radio, GNURadio, Universal Software Radio Peripheral.

I. INTRODUCTION

The problem of communicating with many receivers arises in many “downlink” scenarios such as communication

from an access point to stations in WiFi or from a base station in cellular systems. The conventional approach is

to set up orthogonal channels to each user by time/frequency/code-division multiplexing. Although this approach

eliminates interference between transmissions, it does not in general achieve the highest possible transmission

rates for a given packet error rate (or reliability) [1]. In fact, Superposition Coding (SC) [2] is a well-known

non-orthogonal scheme that achieves the capacity on a scalar Gaussian broadcast channel.

We motivate the use of SC for the two-receiver case. Consider a cellular downlink with several active users.

Given the user density in typical networks, it is always possible to pick two users N (the “near” user) and F (the

“far” user), as shown in Figure 1. The key observation here is that N being geographically closer to the base station

(BS) has a “stronger” (less noisy) link to the BS than F; thus any packet that can be decoded at F can most probably

be decoded at N as well (but not vice versa). The idea behind SC is to optimally exploit this channel ordering.

A BS that uses two-receiver SC can transmit superimposed F and N packets (or more precisely, the far and

near user codewords) in both F’s and N’s time slots (see Figure 1). Thus both links enjoy the combined degrees

of freedom available to N and F, while sharing the transmit power. For large blocklengths, it can be shown that it

is possible to encode F’s packets such that they can be decoded in the presence of interference from N’s packets.

Since N has a stronger link to the BS, N can replicate this step to regenerate and thereby cancel F’s signal from its

received signal. It can then decode its own packet. This is the well-known Successive Decoding (SD) or Successive

Interference Cancellation (SIC) procedure [1].

January 6, 2012 DRAFT

2

dF

dN

Time

Time

Po
w

er
Po

w
er

Figure 1. Illustration of two-user SC. (Left) The users N and F picked are at distances dN and dF respectively with dN < dF. (Right) Typical
transmission timelines with and without SC. The gray slots represent transmissions to other active users which can remain unchanged. With
Time-Division (TD, top), N and F are served in different slots (black and white). With SC (bottom), the BS transmits a linear combination of
individually-coded user waveforms.

We can extend this two-user scheme to any number of users. In fact, SC (combined with SD) achieves the

capacity on a scalar Gaussian broadcast channel. This implies that any TD-achievable rate-pair (i.e., the pair of

spectral efficiencies on a Gaussian channel) can also be achieved using SC, with the rate gain over TD increasing

with the disparity in the user link qualities.

While information theory sufficiently motivates the use of SC, it is largely silent on practical issues such as finite

block length codes, finite encoding and decoding complexity, hardware non-idealities (e.g., carrier frequency offset,

phase noise) that one would encounter while designing such a system. This motivates the experimental study of

SC.

For rapid prototyping and streamlining the design effort, we adopt a software-defined radio (SDR) [3] paradigm

using the well-known open-source GNU Radio platform in conjunction with the Universal Software Radio Peripheral

(USRP) hardware board that serves as an analog and RF front-end [4]. A well-known prototyping system [5], [6],

it has been recently used in testbed design, including UT Austin’s Hydra [7] and by Bell Labs and Microsoft

Research [8].

A. Main Contributions

Building on our previous work [9], the main contributions of this work are as follows:

1) We propose a design technique for SC using a finite library of finite-blocklength point-to-point codes designed

for finite constellations.

2) We design and implement a system architecture and implement it on GNURadio/USRP and determine the

experimentally-achieved set of spectral efficiencies for a packet-error constraint. To the best of our knowledge,

ours is the first attempt at systematically designing and characterizing an SC physical layer that, along with

its attendant hardware, forms a functioning system.

3) We study the implications of using a finite constellation along with a demodulate-and-decode receiver architecture

on the statistics of the interference-plus-noise term.

January 6, 2012 DRAFT

3

B. Report Overview

The remainder of the report is organized as follows. In Section II we briefly summarize how SC achieves capacity

and discuss some implications of restricting the library of codes to be a finite set of finite-blocklength codes. In

Section III, while retaining the rate-centric approach, we propose a design technique for SC with such a finite code

library and specialize this technique to a library comprised of a well-known family of codes designed using the

Bit Interleaved Coded Modulation (BICM) technique [11], and predict the theoretically achievable rate region. In

Section IV, we describe the system architecture that uses these BICM codes to implement SC. The transmitter and

receiver design of the superposition coding system is introduced in Section V. In Section VI, we introduce the

GNU Radio blocks we have implemented for SC. Hardware evaluations including transmit power calibration, noise

figure measurement, and SNR estimation are presented in Section VII. In Section VIII, we present an experimental

setup that emulates a Gaussian BC and use it to experimentally determine the achievable spectral efficiency pairs

for a two-receiver BC under a packet-error constraint. The resulting rate region is the finite-library analog of the

information-theoretic rate region. We also discuss some practical issues that arise in the design of superposition-

coded systems, including the validity of treating inter-user interference as Gaussian noise. In Section IX we conclude

the report and suggest possible avenues for future work.

II. SUPERPOSITION CODING: FROM THEORY TO PRACTICE

We will briefly summarize relevant results from [1], [2] on achieving the capacity of the (scalar) Gaussian

Broadcast Channel (BC) using SC with SD. In addition to making this report self-contained, this discussion identifies

the key architectural building blocks of a superposition-coded system. A closer examination of the blocks allows

us to identify some key practical issues in implementing this ideal scheme.

We use calligraphic fonts (e.g., C) to represent sets and sans-serif fonts (e.g., f(·)) to denote the encoding/decoding

maps. Also, we use [M] to represent {1, · · · ,M} for M ∈ Z
+, and occasionally use the short-hand Tx for a

transmitter and Rx for a receiver.

A. An Information-Theoretic View of Superposition Coding on the Gaussian Channel

Consider a BS that wants to communicate with two receivers N and F. The broadcast nature of the wireless

medium is captured by the broadcast channel model X → (YN, YF) where X denotes the channel input and YN

and YF are the channel outputs at N and F1. Let (X(n)) be a sequence of channel inputs indexed by the channel

use n ∈ [L]. Clearly (X(n)) must encode information relevant to each user. The capacity region of this channel is

the closure of the set of all possible pairs of transmission rates at which the BS can reliably send two independent

information streams, one each to N and F (allowing L → ∞).

For a Gaussian BC, we have

YN(n) = hNX(n) + ZN(n); YF(n) = hFX(n) + ZF(n) (1)

1In practical terms, X(n) can be understood as a (coded) symbol stream from the BS, and the Y ’s as the corresponding noisy and/or distorted
observations of this symbol stream at N and F.

January 6, 2012 DRAFT

4

where N (resp. F) has a complex channel gain hN (resp. hF) and Zu, u ∈ {N, F} denote the WGN processes. We

assume the BS operates with an average power constraint P [W] and a (baseband) bandwidth W [Hz], and denote

the noise power spectral density by N0 [W/Hz]. From the above, the power constraint per channel use is P/W and

E[|Z(n)|2] = N0W . From the definition of N and F, |hN|2 < |hF|2.

One way for (X(n)) to encode information is to communicate with each user in turns by partitioning the total

number of channel uses into time slots (as in TD). For a given n, X(n) contains information pertaining to just

one user. This is the well-studied point-to-point communication problem, for which good practical encoding and

decoding schemes exist. However, for a BC it is known that TDM is suboptimal in general; the root cause lies in its

inability to fully exploit the fact that |hN| > |hF|: N has a “stronger” channel to BS, and hence can always decode

information that can be decoded at F. This makes the scenario ideal for the SC scheme which achieves every pair

of transmission rates in the capacity region.

The key architectural elements of an SC system are:

1) A superposition encoder f that consists of

a) Two point-to-point encoders, fN : {0, 1}�2LRN� → CL (which we call the near-encoder) and fF : {0, 1}�2LRF� →
CL (which we call the far-encoder), that map their respective inputs (the near- and far-messages) to

complex-valued sequences (XN(n)) and (XF(n)), each of block length L. Here RN and RF denote the

bandwidth-normalized transmission rates (or spectral efficiencies) of N and F (the near- and far-rates

for short).

b) A summation device that outputs a sequence

X(n) =
√
1− αXF(n) +

√
αXN(n), (2)

where a fraction α ∈ [0, 1] of the power is assigned to N(the near-fraction for short).

2) A single-user decoder gF : CL → {0, 1}2LRF that estimates the far packet from the observations (YF(n)) by

treating (XN(n)) as Gaussian noise.

3) A successive cancellation decoder gF,N : CL → {0, 1}2LRN that is used to recover N’s packet in the following

steps:

a) Decode F’s packet using the single-user decoder gF.

b) Cancel
√
1− αhNXF(n) from YN(n) by regenerating XF(n) using the far-encoder fF and the knowledge

of hN and α:

Y ′
N(n) = YN(n)− hN

√
1− αXF(n) = hN

√
αXN(n) + ZN(n). (3)

c) Decode N’s packet using the single-user decoder gN : CL → {0, 1}2LRN
.

It is well known that as L → ∞, for all α there exist fN, fF, gF, gN such that communication can occur arbitrarily

reliably for all pairs of transmission rates satisfying

RN < W log2 (1 + αγN) ; RF < W log2

(
1 +

(1− α)γF

αγF + 1

)
, α ∈ [0, 1], (4)

January 6, 2012 DRAFT

5

where

γN � P |hN|2
N0W

and γF � P |hF|2
N0W

represent the near- and far-SNRs respectively. We are interested in the spectral efficiencies

ru = Ru/W, u ∈ {N, F} (5)

which we will simply call rates. Clearly, making α discrete would also make the rate region boundary discrete.

The following subsections elaborate on this issue.

B. Practical Design Issues

As noted above, a discrete α results in a discrete set of rate-pairs defining the corner points of the achievable rate

region2. The lowest (resp. highest) value of α restricts the minimum (resp. maximum) power that can be assigned

to a user for superposed transmission. For finite block lengths there is also a non-zero probability of decoding error.

With these practical constraints factored in, the rate benefits from SC over TD will depend on α, the chosen

discrete set of codes and the system implementation. Using a combination of theory, simulations and experiments,

we show that it is indeed possible to build efficient superposition-coded systems using off-the-shelf single-user

coding and decoding techniques.

III. DESIGNING A SUPERPOSITION-CODED SYSTEM

Based on our observations in the previous section, we first describe our design approach in its full generality in

Section III-A. In Section III-B we illustrate this approach for a well-known single-user coded modulation technique

known as Bit-Interleaved Coded Modulation (BICM). Indeed, good practical codes designed using BICM techniques

form the basis for error correction in many real-world wireless networks (see, e.g., [11] and the references therein).

A. Practical SC using a Finite Code Library

We assume all codes have a block length L < ∞ [channel uses] and fix a target Packet Error Rate (PER) ε � 1.

The latter is the probability that a user cannot decode its packet 3. Define a code library as a collection C of M > 1

single-user encoder-decoder function pairs4 (f(·), g(·)) (a “code” for short). These codes are ordered by their rates

r1 < r2 < · · · < rM [bps/Hz]. We label each code by its rate index i ∈ [M]. We say a rate index i is (ε−)feasible

on a link if the receiver can decode a packet encoded at rate r i with a PER no larger than ε. In the following,

denote the user rate, the corresponding rate index and the PER by r u, iu and PERu for u ∈ {N, F}.

2Time-sharing can be used to convexify this boundary
3We asssume one packet is encoded as one codeword. Hence packet error is equivalent to codeword error.
4In practical terms, an encoding function is a mapping from the packet bits to the signal waveforms induced by the encoder and the modulator.

A decoding function is the detection rule to perform the inverse operation, and is induced by the demodulator and decoder.

January 6, 2012 DRAFT

6

To maximize the potential benefit from SC, we assume that all rates from the library are feasible on the near

link; in particular, the rate index i in single-user mode is feasible with SNR no more than β N(i)γN, βN(i) ≤ 1 for

i ∈ [M]5. However, F must be chosen with some care. If it is too far away from the BS, even a small amount

of near-user interference (from superposition) can render even r 1 infeasible. If F is too close, there is not enough

disparity between the links to N and F to take the full advantage of superposition 6. Keeping this in mind, we pick

F such that the far-link supports a rate index K < M in the single-user mode. Suppose the single-user mode is

feasible on the far link with SNRs βF(i)γF, βF(i) ≤ 1 for i ∈ [K]. When the BS serves N and F using TD, it uses

rate index M to serve N and rate index K to serve F. In this case, the fraction of time slots alloted to each link

determines the effective rate. We now fix the values of α. Since C has only M possible rate indices, all of which

are feasible at N, there are only M meaningful values of α. Assuming small levels of residual interference after

canceling F, α(k) � βN(k), k ∈ [M]7. So for each m ∈ [M], we start with an initial guess α(m) = βN (m) and

find the largest far-user rate rF such that the PER constraints at N and F are simultaneously satisfied. Thus we have

a set of M separate optimization problems, whose mth problem is posed as

max
{r1,··· ,rM}

rF s.t. rN = rk, PERN(m) ≤ ε, PERF(m) ≤ ε. (6)

We denote the rate indices of the solutions of (6) by (i∗F(k)). To meet the constraint on PERN(m), α(m) may need

to be increased slightly from βN(m). Obtaining i∗F(m) yields a possible α∗(m). Even after perfect cancellation of

F’s interference, N requires an SNR of at least γNβN(k); hence

α∗(m) ≥ βN(m), m ∈ [M]. (7)

Also observe that since at most a fraction 1− βN(m) of the transmit power is available for F,

i∗F(m) ≤ max{l : 1− βN(m) > βF(l)}

even if we ignored N’s interference at F.

The solution set of (6) is the set of optimal rate pairs {(rm, ri∗F (m)) : m ∈ [M]}. Combining the achievable

endpoints (rM , 0) and (0, rK), we obtain the rate-region of this code library R∗(C; ε, L, γN, γF) � R∗ as

R∗ � Conv({(0, 0), (rM , 0), {(rk, ri∗F (k)) : m ∈ [M]}, (0, rK)})). (8)

where Conv(·) denotes the convex hull operator. Figure 2 graphically summarizes the design procedure.

In the following subsection we pose (6) for a code library consisting of point-to-point codes based on BICM.

5A reasonable assumption, given the number of proximate receivers in typical urban WiFi or cellular networks
6We study the implications of a poor choice of F in Section VIII-D1.
7We find that this is indeed the case in Sec. V-C2

January 6, 2012 DRAFT

7

(r1, 0) (r6, 0) (r8, 0)

(r1, ri∗F (1))

(r6, ri∗F (6))

(r8, ri∗F (8))

rN

rF

(r9, 0)

(0, rK)

Figure 2. A graphical illustration of the rate region obtained by the design process in Section III-A for a hypothetical code library with
M = 9 codes. The single-user points (filled dark circles) are (r9, 0) and (0, rK), for some K ≤ 9. The gray dashed line joining these two
points represents the rate region achievable by TD. The open circles represent the optimal rate-pairs obtained by solving (6) as N’s rate is varied
from r1 through r8. To obtain R using (8) we find the convex hull of this optimal set (along with the single-user points and the origin) to
obtain a convex polygon with vertices {(rk, ri∗F (k)) : k ∈ {2, 5, 6, 8}} inside the positive quadrant. The solid black lines represent the rate
region boundary in this quadrant.

B. SC using a BICM Code Library

Based on the framework developed so far, we revisit the key elements discussed in Section II-A to map them

to specific subsystems in a Superposition-Coded-BICM (SC-BICM) system; we also introduce some terminology

specific to BICM. Subsequently we solve (6) numerically for BICM codes in the high-reliability regime (ε → 0).

For reliabilities of practical interest (e.g., ε � 0.1), we solve this problem via Monte Carlo simulations for a specific

class of BICM codes we have implemented on our testbed.

1) The SC-BICM System: The channel coding in a canonical BICM system [13] is specified by:

• c: Convolutional code with code-rate ρc, free distance dc and number of free-distance error events w c.

• x: A gray-coded constellation mapper that maps b x interleaved coded bits mapped to each symbol. The symbols

have unit average energy and a minimum intersymbol Euclidean distance of d x
8. We will refer to the range

Sx of x as its constellation. For example, the constellation of a BPSK mapper is {−1, 1}.

• Π: An interleaver matrix that specifies the order in which code bits are read by the constellation mapper. The

corresponding de-interleaver is denoted by Π−1.

Combining a convolutional code c with a modulator x results in a spectral efficiency of r = ρ cbx/W [bps/Hz]. Thus

the near-encoder fN is the composition xN ◦ ΠN ◦ cN. A block length L can encode B = Lr information bits per

codeword or packet. With a slight abuse of notation, we denote the Viterbi decoder and the constellation demapper

by c−1 and x−1 respectively.

We can now adequately describe the key functional units in an SC-BICM system: the superposition encoder f

finds the weighted sum of the outputs of two separate BICM encoders fN and fF to construct X which we will now

call the composite symbol stream. The composite symbol stream is mapped to a waveform and transmitted over the

wireless medium. At F, YF in (1) represents the noisy observations of X seen by the constellation demapper (that is

8The gain of the subsequent Tx stages controls the overall transmit power.

January 6, 2012 DRAFT

8

the first stage in gF). From YF the demapper estimates the reliabilities of each encoded bit of the far-packet, treating

the symbol stream (XN(n)) as interference. The remaining steps are the same as in standard BICM decoding.

Since gF is part of the successive cancellation decoder gF,N, these steps are reproduced at N; thereafter the far-

encoder fF (at N) reconstructs XF from this decoded packet which is then subtracted from YN to yield Y ′
N as in (3).

In the final step gN estimates the near-packet from Y ′
N using standard BICM decoding.

2) A Theoretical Estimate of the Rate Region of an SC-BICM System in the High Reliability Regime: Given

C, (6) can be solved by checking the feasibility9 of every candidate rate pair via (time-consuming) Monte Carlo

simulation. One could reduce this computational overhead by reducing the search space of possible far-rates for a

given near-rate. In fact, a formula to compute the PER for a given rate pair and near-fraction would obviate the

need for simulations.

Unfortunately, accurate formulas for the PER are difficult to obtain even for the point-to-point case, although

there exist well-known upper bounds that are asymptotically tight in the high-reliability regime (PER → 0) [12].

In the high-reliability regime, these upper bounds can be suitably modified, as we will show.

The key difference between SC-BICM and point-to-point BICM lies in the far-demodulator x−1
F that estimates

the reliabilities of the far-code bits from observations of the form

YF(n) = hF
√
1− αXF(n)︸ ︷︷ ︸

Signal

+ hF
√
αXN(n) + ZF(n)︸ ︷︷ ︸

Perturbation

, n ∈ [L]. (9)

Unlike in point-to-point BICM, the perturbation term is not Gaussian; its statistics depend on N’s constellation,

which we assume is known to the demodulator10. Whether or not xN is known, the finiteness of the interference

constellation raises an interesting question about the validity of the Interference-As-Gaussian-Noise (IAGN) model

that assumes such Gaussianity. We investigate this question in greater detail in Section VIII-D3.

When N’s constellation is known, it is useful to treat each composite symbol X(n) =
√
1− αXF(n)+

√
αXN(n)

as a member of a superconstellation with 2bxN+bxF points (see also Figure. 17). Viewed from the demodulator,

interference perturbs each original far-symbol (the parent point) to a randomly chosen daughter point. For each

parent point, define the set of all possible daughter points to be its potential daughter cluster (“cluster” for short).

The size and shape of this cluster depends on the interferer’s constellation. Thus a maximum-likelihood demodulator

interested only in the far-packet infers the most probable parent point of the observed (noisy) daughter point by

identifying the most probable cluster to which an observation belongs. Identifying successively less probable clusters

helps the demodulator refine its reliability estimate of each detected code bit of F. Analogous to the single-user

case, the reliability of the kth bit in the nth symbol can be approximated using the max-log-MAP approximation:

L(k)
n ≈ N0 min

s∈√
1−αS(k−)

xF ×√
αSxN

|YF(n)− hFs|2 − min
s∈√

1−αS(k+)
xF ×√

αSxF

|YF(n)− hFs|2 (10)

9To any desired confidence interval.
10In practice sending this information entails a small overhead, which we neglect in this report.

January 6, 2012 DRAFT

9

where S(k−)
xF ⊂ SxF and S(k+)

xF ⊂ SxF comprise symbols whose kth bits are 0 and 1, respectively.

In the high-reliability regime, the dominant error events in such a demodulator are events where a daughter point

is incorrectly identified with a neighboring cluster. Analogously to the point-to-point case (when these “clusters”

are just points), the probability of these error events is controlled by the effective cluster separation

d
(F,N)
eff ≡ deff(α, xF, xN) = min

p1,p2∈
√
1−αxF

p1 �=p2

min
d1,d2∈√

αxN

|p1 + d1 − p2 − d2|. (11)

Here the superscript (F,N) on the left hand side emphasizes that the parent points are drawn from x F and the

interferer is drawn from xN. Using arguments similar to those in [12], [13], PERF can be approximated as

PERF ≈ BFwcFQ

(
d
(F,N)
eff

√
dcFγF

2

)
(12)

in the high-reliability regime, where Q(x), x > 0 is the Q-function. Assuming perfect cancellation at N,

PERN ≈ BNwcNQ

(
dxN

√
dcNγN

2

)
, (13)

which can be plugged into (13) to approximate PERN.

However, for PERs of practical interest (say PER � 0.1) these Q-function bounds are too loose to predict

the correct solutions to (6). In this regime we use these bounds as estimates that reduce the search space of the

achievable far-rates, and refine them further via simulation. In the following subsection we illustrate these ideas by

means of a design example. The code library chosen in the example is the same as that used in our system design.

C. A Design Example

We use a BICM code library with a decoder structure explained in Section III-B2. These BICM codes were

implemented in our testbed in a point-to-point setting.

The library consists of all possible pairings of 4 convolutional codes {c (1), c(2), c(3), c(4)} with three constellation

mappers. There is no interleaving11. Table I summarizes the details of these convolutional codes. Note that c (2), c(3)

and c(4) are obtained by appropriate puncturing of c (1), which is the standard rate-1/2 constraint length 7 convolutional

code with the generator matrix [133, 171]. The constellations are x ∈ {BPSK,QPSK, 16QAM}. These are all

QAM constellation with even bx, so dx =
√
6/(2bx − 1) [10]. With this code library the available set of spectral

efficiencies is the sequence (r1, r2, . . . , r12) obtained by ordering the elements of the set {1, 2, 4}× { 1
2 ,

2
3 ,

3
4 ,

5
6} =

{ 1
2 ,

2
3 ,

3
4 ,

5
6 , 1,

4
3 ,

3
2 ,

5
3 , 2,

8
3 , 3,

10
3 } in ascending order.

We now solve (6) via Monte Carlo simulation for ε = 0.1 and L = 153612 with perfect receiver CSI and perfect

interference cancellation. Besides illustrating the design procedure for a concrete example, the far-rates from this

11Indeed, code performance can be optimized by suitably tailoring the interleaver Π. However its absence does not change the main message
of this example (or indeed, that of the report), which is to show substantial gains from SC even for finite blocklengths and constellations.

12For our implementation this choice of L strikes a balance between code performance and implementation constraints.

January 6, 2012 DRAFT

10

Code Rate ρc Free Distance dc #Free Dist. Error Eventswc

c(1) 1/2 10 11
c(2) 2/3 6 1
c(3) 3/4 5 8
c(4) 5/6 4 14

Table I
KEY PARAMETERS OF THE CONVOLUTIONAL CODES IN THE CODE LIBRARY.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Near user rate

F
ar

 u
se

r
ra

te

γ
N

 = 15 dB, γ
F
 = 8 dB

Rate pairs achievable by SC

Rate region boundary for SC

Rate region boundary for TD

E = (0,r
8
)

C = (r
7
, r

6
)

D = (r
5
, r

7
)

B = (r
9
, r

5
)

A = (r
12

,0)

Figure 3. Optimal rate pairs (solution to (6)) for γN = 15 dB and γF = 8 dB for the library of M = 12 codes described in SectionIII-C. The TD
rates are obtained by time-sharing between the single-user operating points. The values of α at corner points A-E are 1, 0.2138, 0.1259, 0.0631, 0
respectively.

simulation provide upper bounds for a practical system (where neither of these conditions holds). Figure 3 shows

the simulated rate region for γN = 15 dB and γF = 8 dB.

IV. IMPLEMENTING A SUPERPOSITION-CODED SYSTEM

A. The Platform

We implemented all physical layer processing steps at BS, N and F by suitably modifying an existing point-

to-point wireless testbed. The testbed uses Orthogonal Frequency Division Multiplexing (OFDM), and its design

parameters are similar to those in the IEEE 802.11a standard. The testbed runs on GNU Radio (revision 10923) on

a Linux PC. GNURadio provides driver functions that interface the PC with the USRP board that functions as the

analog frontend and the RF.

January 6, 2012 DRAFT

11

Ts Tch Thr

24μs 30μs 36μs

Preamble Header

Near User Packet

Far User Packet

1− α
α

Figure 4. Packet structure.

Center Frequency 900 MHz
Message Bandwidth 2 MHz

Modulation 16-tone OFDM (8 data, 4 pilot, 4 null)
CP Length 1μs

Table II
PARAMETERS USED IN THE EXPERIMENT.

B. Packet Structure

Transmissions occur in frames. As in WiFi, each frame consists of a preamble followed by a header and a

payload. The preamble assists the receiver in frame acquisition and channel estimation. The header encodes the

BICM code type and α. The preamble and the header designs are left unchanged from the single-user case 13. The

only “multiuser” section in the frame is the payload.

The OFDM packet structure used is depicted in Figure 4. The preamble sequence is used primarily for frequency

and timing synchronization, and is designed by repeating a pseudo-random training sequence of length 8 symbols six

times. In the experiment, the bandwidth is 2 MHz. Hence the duration of the preamble T s = 6×8/2×106 = 24 μs.

The channel estimation symbols (which are the second part of the preamble) are used for performing equalization

and is generated by repeating a pseudo-random sequence of length 16 symbols thrice. The header conveys the

information about code type and power allocation factor α. The data portion of the packet is followed by the

header. The far-user power is α and near-user power is 1− α. The length of the cyclic prefix was chosen to be 4

symbols (2 μs).

The block of L = 1536 coded symbols is transmitted over 192 OFDM symbols with 8 subcarriers for the payload

in each OFDM symbol. We retain the 4 pilot subcarriers used by the testbed for frequency and phase tracking and

4 null subcarriers for spectral shaping. This brings the total number of subcarriers to 8+ 4+ 4 = 16. The message

bandwidth of 2 MHz is limited by the USRP, and the cyclic prefix is made commensurate with the (relatively) flat

frequency response of the channel for this bandwidth. We summarize the system parameters in Table II.

13Consequently, known techniques (e.g., the use of windowed correlators as in [15]) and low-rate header encoding (as in IEEE 802.11a) can
be used.

January 6, 2012 DRAFT

12

C. Single-User Characterization

Creating experimental conditions that ensure a time-invariant wireless propagation loss can be complicated:

although the indoor radio channel and the USRP boards have a reasonably flat response over a 2 MHz bandwidth,

the propagation loss is quite sensitive to changes in the environment (e.g., those caused by motion). One approach

would be to compensate for such changes by appropriate power control at the BS. Doing so would require SNR

feedback from the users on a control channel; designing such feedback links would be worth the effort only if SC

could provide substantial rate-gains in a perfectly power-controlled environment. We focus on the latter question

in the report.

While manual power adjustments work at smaller time scales lasting a few minutes (see our recent submission

[17]), they are quite cumbersome for longer duration experiments (e.g., measuring the PER for all the rates in the

library, or solving (6),see Section VIII-A).

To circumvent this problem, we emulate perfect power control by connecting the Tx and Rx with a coaxial cable

(see Figure 5), resulting in controllable experimental conditions and reproducible outcomes 14. With this coaxial

setup, we measure the point-to-point PER as a function of the transmit power P (which implicitly determines the

SNR γ) for each rate index in the code library using parameters from Table II.

Starting from a value of P chosen such that the received power (at the antenna port, as measured by a spectrum

analyzer) is at a fixed level above the theoretically predicted thermal noise floor, we change the transmit power in

1 dB steps and measure the PER for each rate index15. For comparison we overlay the PER plots for a simulated

Gaussian system with the same theoretical noise floor but without additional sources of noise and distortion in

Figure 6. Measurement data is presented in Table III. For a rate-index i, let Pmin(i; ε) ≡ Pmin(i) as the smallest

experimentally obtained power level that makes a link ε−feasible for rate index i. Denote the corresponding power

level by P̃min(i) on the simulated Gaussian link.Observe that the slopes of the ideal and experimental waterfall

curves are similar upto � 1% PER. At � 10% PER, the combined non-ideality of the hardware and implementaion

result in a maximum power loss of 10 log Pmin(i)

P̃min(i)
≤ 3.5 dB, i ∈ [12] (= 3 × 4) from the ideal results. Thus we

take this “coaxial channel” to be a reasonable approximation of a Gaussian channel in our experiments.Using these

results we obtain the smallest feasible near-fractions βN(i) for N as

βN(i) =
Pmin(i)

Pmin(12)
, i ∈ [12]. (14)

We use (βN(i)) as starting points to find α(i) in the rate region experiment in Section VIII-C.

V. MODIFICATIONS TO IMPLEMENT AN SC-BICM SYSTEM

The SC encoder f is implemented as two instances of a point-to-point BICM (sub-)encoder and a combiner.

The encoded data is then transmitted via a standard OFDM modulator. The receiver is implemented as a single

14Indeed, the same practical considerations motivate the use of channel emulators.
15This mimics a system with a 1 dB granularity in power control. Also note that the effective signal distortion seen at the receiver is usually

higher than that due to thermal noise alone, due to additional sources of noise and distortion such as imperfect receive implementation and
hardware imperfections. In our experiments an initial power level of 20 dB above the theoretical value was found to be adequate.

January 6, 2012 DRAFT

13

Figure 5. The setup used to approximate a Gaussian BC. The USRP boards are connected via cables. A splitter is used to split the transmitted
signal to the two receivers, while an attenuator is used to (virtually) create the presence of a far user.

−2 0 2 4 6 8 10 12 14 16 18
10

−2

10
−1

10
0

SNR γ

P
E

R

BPSK−1/2 16QAM−5/6

Figure 6. Single-user PER versus SNR, along with the 95%confidence intervals for all the 12 rates in the library. The solid lines depict the
experimental results; the ideal curves for BPSK-1/2 and 16QAM-5/6 are also shown (dashed lines). Observe that at 10% PER the implementation
loss is 2− 3.5dB.

January 6, 2012 DRAFT

14

SNR PER(%) SNR PER(%) SNR PER(%)
BPSK 1/2 -1 90.2 QPSK 1/2 2 100 16QAM 1/2 8 98.4

0 37.2 3 69.8 9 44.4
1 6 4 17.3 10 6
2 0.8 5 1.3 11 0.5

BPSK 2/3 1 93.8 QPSK 2/3 4 100 16QAM 2/3 11 94.8
2 37.7 5 66.9 12 38
3 4.2 6 16.3 13 6
4 0.2 7 1.9 14 0.9

BPSK 3/4 2 96.9 QPSK 3/4 5 100 16QAM 3/4 12 99.8
3 44.2 6 84.3 13 73.3
4 5.7 7 21.5 14 23
5 0.5 8 2.8 15 2.3

BPSK 5/6 3 99 QPSK 5/6 7 93.1 16QAM 5/6 14 97.4
4 61.9 8 37.3 15 57.4
5 8.7 9 5 16 21.4
6 1 10 0.4 17 3

Table III
SINGLE USER PER VERSUS SNR. DATA TABLE OF FIGURE 6.

GNU Radio signal processing block, and contains a successive decoding block to decode the near user packet. A

point-to-point transceiver is a special case of the SC system we design here.

A. Transmitter Operation

The transmitter block diagram is shown in Figure 7. The payloads (near- and far-user data in bits) are provided

to the physical layer by the link layer. Each user’s payload is assigned a modulation type, code rate, and the

fraction of the transmit power. As shown in Figure 7, these payloads are separately encoded and modulated based

on their respective parameters prior to time-domain conversion. At this stage, the modulator is identical to two

single-user transmitter. In the time domain, the signals are weighted by the fraction of power allocation factors

(
√
1− α for the near-user signal and

√
α for the far-user signal), and added. The pilot stream is inserted for channel

estimation at receiver, and the signal is processed by IFFT routine. The cyclic prefix is then inserted in each OFDM

symbol. After the preamble and channel estimation sequences are added, the signal is upconverted for transmission.

Due to the non-idealities of the USRP1, software interpolation is implemented in order to get a flatter frequency

response of signals. The link layer interacts with the physical layer through Unix sockets, while the physical layer

is implemented using GNU Radio signal processing blocks, which are introduced in Section VI. The transmitter

interacts with the USRP via GNU Radio driver software.

B. Receiver Operation

The receiver block diagram is shown in Figure 8. The receiver front end is implemented in hardware using the

USRP, while the physical layer is implemented using a single GNU Radio signal processing block. The USRP

January 6, 2012 DRAFT

15

Link

Near User
Queue S/P

S/P
+

Physical
Layer Layer

USRP

Far User
Queue

P/S

Modulator

Modulator

Encoder

Encoder

Insert CP

IFFTInsert Pilots

Sequences
Add Training

TX FilterTX Frontend

√
1− α

√
α

Figure 7. Transmitter block diagram.

downconverts and digitizes signals in the frequency band of operation. Initially, all blocks in the receiver except the

timing and frequency synchronization block are inactive. This block essentially consists of a windowed correlator.

Our algorithm is similar to the well-known Schmidl-Cox algorithm [15]. If the signal in the correlator window

satisfies the correlation properties, this block declares a valid packet along with the location of the channel estimation

training sequence (see Figure 8). Moreover, our preamble structure allows us to use the phase of the correlator

to estimate the frequency offset with respect to the transmitter. Since this estimate can have a large variance, we

call this the Coarse Frequency Estimate. The coarse frequency correction unit uses this coarse estimate supplied

by the synchronization unit to correct all future samples in the packet for frequency offset. Using the location of

the channel estimation training sequence, the coarse-offset corrected samples are now fed to the channel estimator,

which estimates the channel. In this implementation we have assumed that the receiver knows the modulation,

coding and power allocation information. Hence after the channel estimation is complete, the receiver is ready to

decode the payload(s).

Since the locations of the OFDM symbols are known in time, the cyclic prefix (CP) is removed from the incoming

samples, and blocks of 16 (equal to the number of subcarriers) samples are buffered and processed by the FFT

routine. Once in the frequency domain, the pilot subcarriers are identified, and using the channel estimates obtained

earlier, the pilot tones are used to estimate and correct the payload symbols for any residual (i.e., “fine”) frequency

offset. These offset-corrected symbols are equalized using the channel estimates to calculate log likelihood ratio

(LLR) values for channel decoding. Until this point, the receiver operation is quite similar to a typical IEEE

802.11a/g receiver.

The far user decodes its payload bits by simply treating the near user signal as interference. Far user receiver

structure is identical to a single-user OFDM receiver. In contrast, the near user uses the successive decoding

procedure to decode its payload bits (see Figure 8). This procedure involves decoding the far user bits, re-encoding

and modulating the payload to reconstruct the far user component for each subcarrier of the received signal. This is

January 6, 2012 DRAFT

16

Extract
PilotsUSRP

Fine Freq.
Estimation

Sync.
Timing/Freq .

Correction
Fine Freq.

To Far Payload Modulator

Correction
Coarse Freq.

S/PRX Frontend RX Filter Remove CP FFT Equalization

Estimation
Channel

Modulator

From
Channel

Estimation
Far User
Queue

Link
Layer

Near User
Queue

Physical

Encoder

Successive Decoding

P/S

Decoder
(Far User Bits)

Decoder
(Near User Bits)

Layer

Figure 8. Receiver block diagram.

subtracted subcarrier-wise from the received signal; its payload is then extracted from the residual signal. In both

cases, the decoded packets are sent to their respective queues. The link layer checks the CRC for each received

packet and declares an error if the CRC fails.

VI. GNU RADIO BLOCK DIAGRAMS

A. SC Transmitter Blocks

The GNU Radio block diagrams of the SC transmitter are shown in Figure 9 (part I) and 10 (part II), respectively16.

The block names starting with “spc” are the signal processing blocks specific to SC implementation. Other blocks

are standard GNU Radio signal processing blocks, whose descriptions can be found in [21]. As we see from the

two figures, two packets (far and near packets) are modulated and encoded separately as two single-user systems.

The two packets are then weighted according to the power allocation and added. The superimposed packet is next

passed though an OFDM modulator. After the preamble, the channel estimation tones, and the header are inserted,

the packet is pushed to USRP for transmission. The header path, which is the green path in Figure 9, conveys the

power allocation information for both users. The information is first modulated and encoded, and then inserted into

the packet as the header. In this section, we introduce the modified SC blocks in details. These blocks are designed

specifically to SC implementation.

16Enlarged figures are available at http://www.nd.edu/~mhaenggi/pubs/spc_transmitter_part1.pdf and
http://www.nd.edu/~mhaenggi/pubs/spc_transmitter_part2.pdf.

January 6, 2012 DRAFT

http://www.nd.edu/~mhaenggi/pubs/spc_transmitter_part1.pdf
http://www.nd.edu/~mhaenggi/pubs/spc_transmitter_part2.pdf

17

• spc_packet_source

Type Function
Description This block generates a packet for either far or near user. The block generates a

new packet when the number of packets in queue is less than msgq_length.
Parameters msgq_length: maximum number of packets in queue
I/O data_out: output packet

control_out: output control flow

• spc_header_source

Type Function
Description This block generates the header of a packet. The header includes the power

allocation information for far and near users. This block also generates two
vectors of far and near power output. (The standard GNU Radio block
gr_multiply_cc only accepts two vectors with the same length. Hence, the
vector length of far or near power output is equal to the length of data stream.)

Parameters msgq_length: maximum number of packets in queue
I/O header_out: power allocation information for far and near users

far_power_out: vector of far power output
near_power_out: vector of near power output

• spc_usage_map_xx

Type Function
Description This block maps the data and pilot streams according to the usage map stream.

In our OFDM design, not all sub-carriers are used for data transmission. Some
are reserved for pilot stream and some keep unused. This block maps the data
stream into OFDM symbols according to a preset sub-carrier usage pattern.
spc_usage_map_cc: SC usage map with complex input and complex output.

Parameters umap: sub-carrier usage pattern
packet_start_sym: symbol that indicates the start of a packet
unused_symbol: symbol mapped to unused sub-carriers
pilot_sequence: sequence of pseudo-random pilot stream

I/O data_in: input data
control_in: input control flow
data_out: output data
control_out: output control flow

• spc_pad_packet_xxx

January 6, 2012 DRAFT

18

Type Function
Description This block pads zeros to the end of a packet so that the total length of a packet

is a multiple of the number of used sub-carriers in a single OFDM symbol.
spc_pad_packet_ccc: pads packet with complex input, complex output, and
complex pads.

Parameters pad_to_multiple_of_how_many_samples: total number of samples in a packet
after padding
packet_start_sym: symbol that indicates the start of a packet
packet_stop_sym: symbol that indicates the stop of a packet
padvalues: the value that is padded to a packet
control_pad_values: control flow of pad values

I/O data_in: input data
control_in: input control flow
data_out: output data
control_out: output control flow

• spc_insert_into_stream_xxx

Type Function
Description Insert a stream into a data flow.

spc_insert_into_stream_ccc: inserts a stream into a data flow with complex
input, complex output, and complex pads.
spc_insert_into_stream_bbb: inserts a stream into a data flow with binary
input, binary output, and binary pads.
spc_insert_into_stream_ccb: inserts a stream into a data flow with complex
input, complex output, and binary pads.

Parameters insert_what: a stream to be inserted into a data flow
control_sym_where: control symbol of the stream
how_to_insert: the way to insert the stream: either before a data flow or after a
data flow

I/O data_in: input data
control_in: input control flow
data_out: output data

• spc_packet_accumulator_xx

Type Function
Description Buffers generated packets.

spc_insert_into_stream_cc: buffers generated packet with complex input and
complex output.

Parameters buffering_start_sym: control symbol indicating the start of buffer
buffering_end_sym: control symbol indicating the end of buffer

I/O data_in: input data
control_in: input control flow
data_out: output data
control_out: output control flow

January 6, 2012 DRAFT

19

B. SC Receiver Block

The receiver design, which differs from the transmitter design, only includes a single signal processing block

(“spc_receiver_fsm”) which contains all the functionalities shown in Figure 5. Such design benefits high efficiency

in the experiment, since the receiver’s computation complexity is much higher than the transmitter’s complexity.

• spc_receiver_fsm

Type Function
Description Demodulates and decodes a received packet. If the far user decodes a packet, it

only decodes its own information; if the near user decodes a packet, it first
decodes the far-user’s information and then implements SD to decode its own
information.

Parameters chanesttones: channel estimation sequence
noise_power_offset: the gap between the end of a packet and the start of noise
estimation samples
noise_estimation_length: the length of samples used for noise estimation
pilot_sequence: pilot streams
preambletones: preamble sequence
umap: usage map sequence

I/O data_in: input data

VII. HARDWARE CHARACTERIZATION

Before we proceed to the actual experiment, it is necessary to experimentally characterize the RF front-end

we use. In this section, we present the transmit power and noise figure measurement of USRP boards. The SNR

estimation of a received packet is also presented.

A. Transmit Power Characterization

In GNU Radio and USRP, the transmit power is controlled by the amplitude gain setting at the transmitter. The

larger the amplitude gain has, the higher the transmit power is. To measure the transmit power quantitively, we

only transmit the data portion of a packet instead of the entire packet 17.

Figure 11 shows the averaged transmit power on each subcarrier as a function of the amplitude gain 18. We observe

that the USRP transmitter saturates when the amplitude multiplier is set larger than 3000. Figure 12 shows the

frequency response of OFDM symbols with the amplitude multiplier 221. By implementing the software interpolater

(see Section V-A), the frequency response of the transmitted signal is flat.

17The term "entire" represents a packet with preamble, channel estimation sequence, and pilot stream as presented in SectionV.
18The relationship between amplitude gain and output power varies from different daughterboards. The results refer to FLEX900

daughterboards.

January 6, 2012 DRAFT

20

<
<
f
a
r

s
o
u
r
c
e
>
>

spc_packet_source
+
m
s
g
q
_
l
e
n
g
t
h
:

s
i
z
e
_
t

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

gr_packed_to_unpacked_bb
+
b
i
t
s
_
p
e
r
_
c
h
u
n
k
:

i
n
t

+
e
n
d
i
a
n
n
e
s
s
:

g
r
_
e
n
d
i
a
n
n
e
s
s
_
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

<
<
f
a
r

m
o
d
u
l
a
t
o
r
>
>

gr_chunks_to_sym
bols_bc

+
s
y
m
b
o
l
_
t
a
b
l
e
:

s
t
d
:
:
v
e
c
t
o
r
<

g
r
_
c
o
m
p
l
e
x

>

+
D
:

i
n
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

gr_packed_to_unpacked_bb
+
b
i
t
s
_
p
e
r
_
c
h
u
n
k
:

i
n
t

+
e
n
d
i
a
n
n
e
s
s
:

g
r
_
e
n
d
i
a
n
n
e
s
s
_
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

<
<
f
a
r

e
n
c
o
d
e
r
>
>

trellis.encoder_bb
+
F
S
M
:

f
s
m

+
S
T
:

i
n
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

<
<
n
e
a
r

s
o
u
r
c
e
>
>

spc_packet_source
+
m
s
g
q
_
l
e
n
g
t
h
:

s
i
z
e
_
t

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

gr_packed_to_unpacked_bb
+
b
i
t
s
_
p
e
r
_
c
h
u
n
k
:

i
n
t

+
e
n
d
i
a
n
n
e
s
s
:

g
r
_
e
n
d
i
a
n
n
e
s
s
_
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

<
<
n
e
a
r

m
o
d
u
l
a
t
o
r
>
>

gr_chunks_to_sym
bols_bc

+
s
y
m
b
o
l
_
t
a
b
l
e
:

s
t
d
:
:
v
e
c
t
o
r
<

g
r
_
c
o
m
p
l
e
x

>

+
D
:

i
n
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

gr_insert_into_stream
_bbb

+
i
n
s
e
r
t
_
w
h
a
t
:

c
o
n
s
t

s
t
d
:
:
v
e
c
t
o
r
<
g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t
>

+
c
o
n
t
r
o
l
_
s
y
m
_
w
h
e
r
e
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
h
o
w
_
t
o
_
i
n
s
e
r
t
:

i
n
s
e
r
t
_
h
o
w
_
t

+
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

gr_packed_to_unpacked_bb
+
b
i
t
s
_
p
e
r
_
c
h
u
n
k
:

i
n
t

+
e
n
d
i
a
n
n
e
s
s
:

g
r
_
e
n
d
i
a
n
n
e
s
s
_
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

<
<
n
e
a
r

e
n
c
o
d
e
r
>
>

trellis.encoder_bb
+
F
S
M
:

f
s
m

+
S
T
:

i
n
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

<
<
f
a
r

p
o
w
e
r
>
>

gr_m
ultiply_cc

+
v
l
e
n
:

s
i
z
e
_
t

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
a
l
p
h
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

<
<
n
e
a
r

p
o
w
e
r
>
>

gr_m
ultiply_cc

+
v
l
e
n
:

s
i
z
e
_
t

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
a
l
p
h
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

gr_add_cc
+
v
l
e
n
:

s
i
z
e
_
t

+
f
a
r
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
n
e
a
r
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

spc_header_source
+
m
s
g
q
_
l
e
n
g
t
h
:

s
i
z
e
_
t

+
h
e
a
d
e
r
_
o
u
t
(
)
:

c
h
a
r

+
f
a
r
_
p
o
w
e
r
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

+
n
e
a
r
_
p
o
w
e
r
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

gr_packed_to_unpacked_bb
+
b
i
t
s
_
p
e
r
_
c
h
u
n
k
:

i
n
t

+
e
n
d
i
a
n
n
e
s
s
:

g
r
_
e
n
d
i
a
n
n
e
s
s
_
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

<
<
h
e
a
d
e
r

e
n
c
o
d
e
r
>
>

trellis.encoder_bb
+
F
S
M
:

f
s
m

+
S
T
:

i
n
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

gr_unpacked_to_packed_bb
+
b
i
t
s
_
p
e
r
_
c
h
u
n
k
:

i
n
t

+
e
n
d
i
a
n
n
e
s
s
:

g
r
_
e
n
d
i
a
n
n
e
s
s
_
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

c
h
a
r

<
<
h
e
a
d
e
r

m
o
d
u
l
a
t
o
r
>
>

gr_chunks_to_sym
bols_bc

+
s
y
m
b
o
l
_
t
a
b
l
e
:

s
t
d
:
:
v
e
c
t
o
r
<

g
r
_
c
o
m
p
l
e
x

>

+
D
:

i
n
t

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

gr_repeat
+
i
t
e
m
s
i
z
e
:

s
i
z
e
_
t

=

s
i
z
e
o
f
(
g
r
_
c
o
m
p
l
e
x
)

+
i
n
t
:

i
n
t
e
r
p

=

p
a
c
k
e
t
_
l
e
n
g
t
h

+
d
a
t
a
_
i
n
(
)

+
d
a
t
a
_
o
u
t
(
)

gr_repeat
+
i
t
e
m
s
i
z
e
:

s
i
z
e
_
t

=

s
i
z
e
o
f
(
g
r
_
c
o
m
p
l
e
x
)

+
i
n
t
:

i
n
t
e
r
p

=

p
a
c
k
e
t
_
l
e
n
g
t
h

+
d
a
t
a
_
i
n
(
)

+
d
a
t
a
_
o
u
t
(
)

gr_vector_to_stream
+
i
t
e
m
_
s
i
z
e
:

s
i
z
e
_
t

=

s
i
z
e
o
f
(
c
h
a
r
)

+
n
i
t
e
m
s
_
p
e
r
_
b
l
o
c
k
:

s
i
z
e
_
t

=

h
e
a
d
e
r
_
l
e
n
g
t
h

+
d
a
t
a
_
i
n
(
)

+
d
a
t
a
_
o
u
t
(
)

gr_vector_source_b
+
d
a
t
a
:

s
t
d
:
:
v
e
c
t
o
r
<
c
h
a
r
>

+
r
e
p
e
a
t
:

b
o
o
l

=

T
r
u
e

+
i
n
t
:

v
l
e
n

=

h
e
a
d
e
r
_
l
e
n
g
t
h

+
d
a
t
a
_
o
u
t
(
)
:

i
n
t

gr_vector_to_stream
+
i
t
e
m
_
s
i
z
e
:

s
i
z
e
_
t

=

s
i
z
e
o
f
(
c
h
a
r
)

+
n
i
t
e
m
s
_
p
e
r
_
b
l
o
c
k
:

s
i
z
e
_
t

=

h
e
a
d
e
r
_
l
e
n
g
t
h

+
d
a
t
a
_
i
n
(
)

+
d
a
t
a
_
o
u
t
(
)

Figure 9. GNU Radio block diagrams of SC transmitter (Part I).

January 6, 2012 DRAFT

21

spc_usage_m
ap_cc

+
u
m
a
p
:

s
t
d
:
:
v
e
c
t
o
r
<
i
n
t
>

+
p
a
c
k
e
t
_
s
t
a
r
t
_
s
y
m
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
u
n
u
s
e
d
_
s
y
m
b
o
l
:

g
r
_
c
o
m
p
l
e
x

+
p
i
l
o
t
_
s
e
q
u
e
n
c
e
:

s
t
d
:
:
v
e
c
t
o
r
<
g
r
_
c
o
m
p
l
e
x
>

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

spc_pad_packet_ccc
+
p
a
d
_
t
o
_
m
u
l
t
i
p
l
e
_
o
f
_
h
o
w
_
m
a
n
y
_
s
a
m
p
l
e
s
:

i
n
t

+
p
a
c
k
e
t
_
s
t
a
r
t
_
s
y
m
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
p
a
c
k
e
t
_
s
t
o
p
_
s
y
m
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
p
a
d
v
a
l
u
e
s
:

c
o
n
s
t

s
t
d
:
:
v
e
c
t
o
r
<
g
r
_
c
o
m
p
l
e
x
>

+
c
o
n
t
r
o
l
_
p
a
d
_
v
a
l
u
e
s
:

c
o
n
s
t

s
t
d
:
:
v
e
c
t
o
r
<
g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t
>

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

gr_m
ultiply_const_cc

+
c
o
n
s
t
:

g
r
_
c
o
m
p
l
e
x

=

s
q
r
t
(
n
t
o
n
e
s
_
d
a
t
a
)

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

gr_stream
_to_vector

+
i
t
e
m
_
s
i
z
e
:

s
i
z
e
_
t

=

s
i
z
e
o
f
(
g
r
_
c
o
m
p
l
e
x
)

+
n
i
t
e
m
s
_
p
e
r
_
b
l
o
c
k
:

s
i
z
e
_
t

=

n
t
o
n
e
s
_
d
a
t
a

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

gr_fft_vcc
+
f
f
t
_
s
i
z
e
:

i
n
t

=

n
t
o
n
e
s
_
d
a
t
a

+
f
o
r
w
a
r
d
:

b
o
o
l

=

F
a
l
s
e

+
w
i
n
d
o
w
:

c
o
n
s
t

s
t
d
:
:
v
e
c
t
o
r
<
f
l
o
a
t
>

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

ofdm
_cyclic_prefixer

+
i
n
p
u
t
_
s
i
z
e
:

s
i
z
e
_
t

+
o
u
t
p
u
t
_
s
i
z
e
:

s
i
z
e
_
t

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

gr_stream
_to_vector

+
i
t
e
m
_
s
i
z
e
:

s
i
z
e
_
t

=

s
i
z
e
o
f
(
g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t
)

+
n
i
t
e
m
s
_
p
e
r
_
b
l
o
c
k
:

s
i
z
e
_
t

=

n
t
o
n
e
s
_
d
a
t
a

+
d
a
t
a
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

spc_insert_into_stream
_ccc

+
i
n
s
e
r
t
_
w
h
a
t
:

c
o
n
s
t

s
t
d
:
:
v
e
c
t
o
r
<
g
r
_
c
o
m
p
l
e
x
>

+
c
o
n
t
r
o
l
_
s
y
m
_
w
h
e
r
e
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
h
o
w
_
t
o
_
i
n
s
e
r
t
:

i
n
s
e
r
t
_
h
o
w
_
t

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

m
ultiply_const_cc

+
c
o
n
s
t
:

g
r
_
c
o
m
p
l
e
x

=

l
f
p
_
g
a
i
n

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

spc_packet_accum
ulator_cc

+
b
u
f
f
e
r
i
n
g
_
s
t
a
r
t
_
s
y
m
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
b
u
f
f
e
r
i
n
g
_
e
n
d
_
s
y
m
,
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

spc_insert_into_stream
_bbb

+
i
n
s
e
r
t
_
w
h
a
t
:

c
o
n
s
t

s
t
d
:
:
v
e
c
t
o
r
<
g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t
>

+
c
o
n
t
r
o
l
_
s
y
m
_
w
h
e
r
e
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
h
o
w
_
t
o
_
i
n
s
e
r
t
:

i
n
s
e
r
t
_
h
o
w
_
t

+
d
a
t
a
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

<
<
h
e
a
d
e
r

i
n
s
e
r
t
e
r
>
>

spc_insert_into_stream
_ccb

+
c
o
n
t
r
o
l
_
s
y
m
_
w
h
e
r
e
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

=

c
n
t
r
l
_
s
y
m
b
o
l
_
c
h
e
s
t
_
e
n
d

+
h
o
w
_
t
o
_
i
n
s
e
r
t
:

i
n
s
e
r
t
_
h
o
w
_
t

=

i
n
s
e
r
t
_
a
f
t
e
r
_
c
o
n
t
r
o
l
_
s
y
m

+
d
a
t
a
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
h
e
a
d
e
r
_
i
n
(
)
:

g
r
_
c
o
m
p
l
e
x

+
d
a
t
a
_
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
h
e
a
d
e
r
_
c
o
n
t
r
o
l
_
i
n
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

gr_add_cc
+
d
a
t
a
_
o
u
t
(
)
:

g
r
_
c
o
m
p
l
e
x

gr_spc_intert_into_stream
_bbb

+
c
o
n
t
r
o
l
_
o
u
t
(
)
:

g
r
_
s
p
c
_
c
o
n
t
r
o
l
_
f
l
o
w
_
t
y
p
e
:
:
c
o
n
t
r
o
l
_
t

gr_chunks_to_sym
bols_bc

+
d
a
t
a
_
i
n
(
)
:

c
h
a
r

gr_vetcor_to_stream
+
d
a
t
a
_
o
u
t

Figure 10. GNU Radio block diagrams of SC transmitter (Part II).

January 6, 2012 DRAFT

22

10
1

10
2

10
3

10
4

−80

−70

−60

−50

−40

−30

−20

−10

0

Amplitude

P
ow

er
 (

dB
m

)

Output power
Output power (1dB compression)
Amplitude gain in rate region experiment

1 dB compression point

Figure 11. Transmit power per subcarrier measured in dBm versus amplitude multiplier for USRP1 with FLEX900 daughterboard. The far
power and near power in transmitter are set at 1 and 0, respectively. The curve of circles is the measured transmit power per subcarrier. The
solid-line curve is the 1 dB compression curve. The triangle is the amplitude gain that we use in rate region experiment (see SectionVIII).

Figure 12. Spectrum of the USRP TX output. The amplitude multiplier is 221. The total transmit power is −29.95 dBm in a 2 MHz bandwidth
range.

January 6, 2012 DRAFT

23

B. Noise Figure Measurement

Noise figure measures the degradation of SNR at receiver due to the noise from receiver amplifiers. For example,

Figure 13 shows the spectrum of an FM signal from Agilent N9310A RF Signal Generator (N9310A). The snapshot

is captured by Agilent N9010A EXA Signal Analyzer (N9010A). The power of the FM signal is -50 dBm, and the

frequency deviation is 100 kHz. The thermal noise density at the output of N9310A is

N0 = kT ≈ −173.8 dBm/Hz,

where k = 1.374 · 10−23 is the Boltzmann’s constant; T = 300 K is room temperature. The resolution bandwidth

is set at 18 kHz. From Figure 13, we obtain that the noise floor is at -112.3 dBm. Hence, the background noise

density at N9010A is No = −112.3 − 10 log10(1.8 · 104) = −154.9 dBm/Hz, where 1.8 × 104 is the resolution

bandwidth. The noise factor F is defined as the input to output SNRs:

F =
Si/Ni

So/No
,

where Si and So represent input and output signal powers, respectively; N i and No represent input and output

noise powers, respectively. The noise figure is the logarithmic equivalent of the noise factor:

Nfig = 10 log10 F = −10(log10 kTB − log10 No) + 10 log10 Si − 10 log10 So,

where B is signal bandwidth. In this example, we have S i = So. The noise figure of N9010A is then

Nfig = −(−173.8 + 154.9) = 18.9 dB.

Similar steps can be taken to measure the noise figure of the USRP1. In USRP analyzer (usrp_fft.py), we only

obtain relative power levels (shown in dB) in digital domain. However, we can still obtain the output SNR since the

signal and noise powers are scaled by the same value. We keep the transmit signal power unchanged and measure

the received signal power and noise floor with different RX gains. The RX gain is the amplifier gain setting in the

receiver to magnify received signal. The range of RX gain differs with different daughterboards. For FLEX900, the

RX gain ranges from 0 to 90. Figure 14 shows the signal power and noise floor as a function of the RX gain. The

signal from N9310A is a FM signal with power −50 dBm. All the power values in Figure 14 are relative power (in

dB) compared to the noise floor at rx_gain = 0, where the noise floor at rx_gain = 0 is equal to −78.7 dB. From

the figure, we observe that when the RX gain ranges from 0 to 25, the signal power increases with the increase of

the RX gain while the noise power remains stable. Hence, the noise figure is reduced, which is shown in Figure

15. The input noise power Ni = −173.8 + 10 log10(2 × 103) = −140.8 dBm, since the resolution bandwidth of

USRP is 2× 103 Hz. The rest of the calculation is then straightforward. If the RX gain drops in range from 25 to

55, both signal and noise power increase with RX gain. When the RX gain is larger than 55, the receiver reaches a

saturation region. The signal is beyond the dynamic range of the receiver ADC. The noise floor cannot be further

reduced since it is already at its minimum. Figure 15 shows the noise figure of USRP1 as a function of RX gain.

January 6, 2012 DRAFT

24

Figure 13. Spectrum of an FM signal with central frequency 900 MHz and frequency deviation 100 kHz.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

RX gain

P
ow

er
 (

dB
)

Noise floor
Signal power

Figure 14. Signal power and noise floor (in dB) as a function of RX gain. Input signal is an FM signal. Data is collected from USRP spectrum
analyzer (usrp_fft.py). All power values are compared to the noise floor at rx_gain = 0. The noise floor at rx_gain = 0 is −78.7 dB, which
is the relatvie power value in digital domain.

January 6, 2012 DRAFT

25

0 10 20 30 40 50 60 70 80 90
40

45

50

55

60

65

RX gain

N
oi

se
 fi

gu
re

 (
dB

)

Figure 15. Noise figure versus the RX gain of USRP1 with FLEX900 daughterboard.

C. SNR Estimation

We use a cable to connect the USRP transmitter and receiver to estimate the SNR of a received packet. A typical

SNR loss of 0.5 dB in cable is considered. The RX gain is set to 0. As indicated in Section V-B, the receiver first

operates the timing and frequency recovery. It calculates the auto- and cross-correlation of a received signal chunk.

When a packet is detected, we label the index of the first sample of the packet as sync_index (see Section V-B in

details). It calculates the cross-correlation of the signal chunk starting from the sync_index as

Rc =
1

5

4∑
k=0

7∑
m=0

x∗(8k +m)x(8k + 8 +m),

where x(i) is the signal sample at time index i. x(0) is the sample at sync_index. The estimated SNR of a received

packet is:

γ̂ =
|Rc|
PN

,

where

Pn =

∑n
i=1 |x(i)|2

n
,

where n is the number of noise samples. The noise samples are collected at the end of each packet. In our experiment,

the maximum transmission rate we need to support is 16QAM 5/6. (For a PER rate under than 10%, we say that

the rate is supported.) From Figure 6, we obtain that the SNR is at least 18 dB in single-user system to cover the

entire range of rates (from BPSK 1/2 to 16QAM 5/6).

Next, we determine the transmitter multiplier gain. From Section VII-B, we obtain the the noise power per

subcarrier is

Pn = N0 + 10 log

(
2× 106

16

)
+ 62.1 = −60.73 dBm,

January 6, 2012 DRAFT

26

where N0 = −173.8 is the thermal noise density; 2 × 106/16 is the bandwidth per subcarrier; 62.2 is the noise

figure obtained from Figure 15 with RX gain at 0. The desired transmitter power is the noise power plus SNR

(considering 0.5 SNR loss in cable).

Pt = −60.73 + 18 + 0.5 = −42.03 dBm, (15)

which corresponds to a transmitter multiplier of 221 (see Figure 11). For our experiments, we only need to use

multiplier values of 221 or lower, which means we keep the transmitter operating in the linear region. Software

calculation verifies the result.

VIII. EXPERIMENTAL RESULTS

A. Emulating a Gaussian BC

The time variation of the propagation loss is a bigger problem for the BC because of the presence of two

Tx-Rx paths in the BC as opposed to just one in the point-to-point setting of Section IV-C. Moreover, checking

the feasibility of candidate rate-pairs while solving (6) requires repetitive PER measurements. Thus we emulate a

Gaussian BC using a combination of coaxial cables, a splitter, and an attenuator bank, as shown in Figure 5. The

USRPs shown communicate with three Linux PCs via USB 2.0. The PCs are configured to run the appropriate Tx

or Rx code in GNURadio.

The next step is to fix the single-user SNRs γN, γF. In our experiment we fix them implicitly by choosing a

transmit power PN and an attenuator setting aF. In the single-user mode, PN is chosen to be Pmin(12) (plus some

additional loss due to the splitter) using the single user results from Section IV-C. The measured γN was found

to be ≈ 18 dB. With this value of PN, we set F in the single-user mode to operate at a desired rate (e.g., QPSK,

rate-5/6), and increase the attenuation in η = 1 dB steps until the far-link violates the PER constraint. γ F is the

receive SNR for the largest attenuation setting that supports a 10% (or lower) PER at F (for QPSK rate-5/6, this

was found to be ≈ 10 dB). With this approximation to the Gaussian BC, we are now ready to obtain the rate region

for this system by solving (6) experimentally.

B. The Runtime Requirement

The GNU Radio runs on a general purpose computer. In our experiment, we use the desktop with two quad-core

Intel Xeon CPU E5520@2.27 GHz with 8 GB RAM. The transmitter code occupies 20% of one CPU core on

average and RAM of 32 MB. It takes approximately 2.1 ms for the transmitter to generate a single packet. On

the other hand, the receiver code occupies approximately 96% of one CPU core on average and RAM of 500 MB

(No parallel computing technique is involved in the experiment). For the far user, the decoding procedure takes

approximately 8.7 ms. For the near user, it needs approximately 19.7 ms to decode its packet. The time is meausred

by recording the timestamps before and after encoding(decoding) a packet. The near user needs to do the decoding

twice and encoding once so that the complexity is more than doubled compared to the far user. In the experiment,

the transmitter has an idle gap of 100 ms between two packets. Hence the receiver has enough time to decode.

January 6, 2012 DRAFT

27

The source codes we have designed for SC is approximate 2 MB on disk with over 50 files. The total receiver

implementation is within several thousand lines.

C. The Rate Region Experiment

Given PN, aF and a code library C with rate-indices k ∈ [M], we use the above experimental setup to solve (6)

to find (k, i∗F(k)) using the following procedure:

1) Initialize:

a) α(k) = βN(k) where βN(k) is calculated from (14).

b) iF(k) = argmaxl{Pmin(l) < (1− βN(k))aFPN}.

2) Calculate the PER for (k, iF(k)) for stream weights
√
α(k),

√
1− α(k).

3) If

a) (feasible at N) AND (feasible at F): set i∗F(k) = iF(k), k
→ k + 1, go to Step 1.

b) (feasible at N) AND (infeasible at F): iF(k)
→ iF(k)− 1, go to Step 2.

c) (infeasible at N) AND (feasible at F): α(k)
→ α(k)× 10
η
10 , go to Step 2.

d) (infeasible at N) AND (infeasible at F): α(k)
→ α(k)× 10
η
10 , iF(k)
→ iF(k)− 1, go to Step 2.

Here η is the step size for the near-fraction (in this report, we set η = 1 dB).

D. Results

We use the procedure in Section VIII-C to study three interesting problems: (a) How does the measured rate

region change with aF (i.e., the far-link is made stronger or weaker)? (b) how much does imperfect interference

cancellation at N affect the rate region, and (c) what are good models to account for N’s interference at F, and, in

particular, how useful is the popular Interference-As-Gaussian-Noise (IAGN) model in predicting its impact. We

discuss these problems in the following.

1) Changing the Strength of the Far-Link: To study this problem, we find the rate region for two possible far-link

SNRs: γF = 5 dB and γF = 10 dB, which correspond to single user rate indices K = 3 and K = 8 respectively.

The near user SNR for both cases is kept at γN = 18 dB. These scenarios are emulated by using suitable attenuator

values aF = 9, 4 respectively19. The results are shown in Figure 16 Here, we used a transmit power PN = −43

dBm and step size η = 1 dB.

Table IV shows the mapping of rate index k versus the transmission rate. We do not consider the BPSK 5/6

during the experiment since we observe that it has worse performance (PER versus SNR) compared to the QPSK

1/2, inspite of having a lower spectral efficiency (thus it is a poor code). We now describe a step-by-step procedure

on how to obtain the set of achievable rate pairs (under the reliablility constraint) for the following two cases:

1) γN = 18 dB and γF = 10 dB (see Table V).

2) γN = 18 dB and γF = 5 dB (see Table VI).

19Note that aF is not simply equal to γN − γF owing to the two different boards and cables used, which had to be calibrated separately.

January 6, 2012 DRAFT

28

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Near user rate

F
ar

 u
se

r
ra

te

γ
N

 = 18 dB, γ
F
 = 5 dB

Rate pairs achievable by SC
Rate region boundary for SC
Rate region boundary for TD

D (0,r
3
)

C (r
5
,r

2
)

B (r
8
,r

1
)

A (r
12

,0)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

γ
N

 = 18 dB, γ
F
 = 10 dB

Near user rate

F
ar

 u
se

r
ra

te

Rate pairs achievable by SC
Rate region boundary for SC
Rate region boundary for TD

C (0,r
8
)

B (r
6
,r

6
)

A (r
12

,0)

Figure 16. Experimentally obtained rate region for the library of M = 12 codes using the setup shown in Figure5 for two different choices of
F. (Left) The values of α at corner points A-D are respectively 1, 0.126, 0.079, 0. (Right) The values of α at corner points A-C are respectively
1, 0.126, 0.

k 1 2 3 5 6 7
Rate BPSK 1/2 BPSK 2/3 BPSK 3/4 QPSK 1/2 QPSK 2/3 QPSK 3/4

k 8 9 10 11 12
Rate QPSK 5/6 16QAM 1/2 16QAM 2/3 16 QAM 3/4 16 QAM 5/6

Table IV
TABLE OF k VERSUS THE TRANSMISSION RATE.

We take Table V as an example. The far-user and near-user SNRs are 10 dB and 18 dB, respectively. From the

single-user PER curves in Figure 6, the maximum supportable rates for far user and near user are QPSK 5/6 (k = 8)

and 16QAM 5/6 (k = 12), respectively. The rate region experiment starts with QPSK 5/6 (k = 8) for far user and

BPSK 1/2 (k = 1) for near user with α(1) = 0.0251 (see Step 1 in Section VIII-C). The parameter α determines

the SNRs of both users. If the near-user rate is not supported 20 (as the first three αs in the table), we follow Step

3.c in Section VIII-C. α is increased until the rate of both users are supported. For example, α(1) = 0.0251 is not

sufficient to keep the near-user’s PER below 10% due to the imperfect interference cancellation. The increase step

of α is chosen so that the SNR of near user is increased by 1 dB. In this case, α(1) = 0.0398 is required. If the

far-user’s rate is not supported (as the case of QPSK 3/4 (k = 7) for far user and BPSK 3/4 (k = 3) for near user),

we jump to Step 3.b in Section VIII-C. We reduce the far user’s rate to QPSK 2/3 (k = 6) and the far-user’s rate

is supported. The experiment stops when BPSK 1/2 (k = 1) is not supported for the far user. Similar steps can be

taken to obtain Table VI.

We clearly see dependence on the choice of γF. With γF = 5 dB, there is not enough disparity between the near-

and far-links to fully benefit from superposition (F is “too close” to BS). This is in fact predicted by theory [1]. On

the other hand, we see the effect of a finite code library when K = 3 (F is “too far” from BS): since its single-user

20We say that the rate is supported if the PER is below 10%.

January 6, 2012 DRAFT

29

Far user rate QPSK 5/6 QPSK 5/6 QPSK 5/6 QPSK 3/4 QPSK 3/4 QPSK 3/4
Near user rate BPSK 1/2 BPSK 1/2 BPSK 1/2 BPSK 1/2 BPSK 2/3 BPSK 2/3
Far user PER 41.1 1.7 3.6

Near user PER 52.4 15.8 1 1.4 58 9.9
α 0.0251 0.0316 0.0398 0.0398 0.0398 0.0501

Under 10% PER? Yes Yes

Far user rate QPSK 3/4 QPSK 3/4 QPSK 3/4 QPSK 2/3 QPSK 2/3 QPSK 2/3
Near user rate BPSK 3/4 BPSK 3/4 BPSK 3/4 BPSK 3/4 QPSK 1/2 QPSK 1/2
Far user PER 12.1 1.3 1

Near user PER 67.6 19.1 1.5 1.5 25.1 6.4
α 0.0501 0.631 0.0794 0.0794 0.0631 0.0794

Under 10% PER? Yes Yes

Far user rate QPSK 2/3 QPSK 2/3 QPSK 2/3 QPSK 2/3 QPSK 1/2 QPSK 1/2
Near user rate QPSK 2/3 QPSK 2/3 QPSK 3/4 QPSK 3/4 QPSK 3/4 QPSK 5/6
Far user PER 7.9 33.5 0.5

Near user PER 27.3 2.4 23 7.5 3 58.3
α 0.1 0.1259 0.1259 0.1585 0.1585 0.1585

Under 10% PER? Yes Yes

Far user rate QPSK 1/2 QPSK 1/2 BPSK 3/4 BPSK 3/4 BPSK 1/2 BPSK 1/2
Near user rate QPSK 5/6 QPSK 5/6 QPSK 5/6 16QAM 1/2 16QAM1/2 16QAM 2/3
Far user PER 12.6 1.1 51.8 4.1 12.1

Near user PER 15.4 1.7 2.1 9.8 100
α 0.2 0.2512 0.2512 0.2 0.2512 0.3981

Under 10% PER? Yes Yes

Table V
RATE REGION DATA SHEET. 18DB FOR NEAR-USER SNR AND 10DB FOR FAR-USER SNR. DATA OF FIGURE 16 (LEFT) .

Far user rate BPSK 3/4 BPSK 2/3 BPSK 2/3 BPSK 2/3 BPSK 2/3 BPSK 2/3
Near user rate BPSK 1/2 BPSK 1/2 BPSK 2/3 BPSK 2/3 BPSK 3/4 BPSK 3/4
Far user PER 17.9 1.9 3.2 7.5

Near user PER 5.9 5.9 48.3 5.8 58.4 9.4
α 0.0251 0.0251 0.0398 0.0501 0.0501 0.0631

Under 10% PER? Yes Yes Yes

Far user rate BPSK 2/3 BPSK 2/3 BPSK 2/3 BPSK 2/3 BPSK 1/2 BPSK 1/2
Near user rate QPSK 1/2 QPSK 1/2 QPSK 2/3 QPSK 2/3 QPSK 2/3 QPSK 3/4
Far user PER 4.2 13.8 0.4

Near user PER 25.6 6.8 22.8 1.8 1.6 24.2
α 0.0631 0.0794 0.1 0.1259 0.1259 0.1259

Under 10% PER? Yes Yes

Far user rate BPSK 1/2 BPSK 1/2 BPSK 1/2 BPSK 1/2 BPSK 1/2 BPSK 1/2
Near user rate QPSK 3/4 QPSK 5/6 QPSK 5/6 16QAM 1/2 16QAM 1/2 16QAM 1/2
Far user PER 0.6 0.7 26.9

Near user PER 2.3 42.5 8 45.6 12.8 1.52
α 0.1585 0.1585 0.2 0.2 0.2512 0.3162

Under 10% PER? Yes Yes

Table VI
RATE REGION DATA SHEET. 18DB FOR NEAR-USER SNR AND 5DB FOR FAR-USER SNR. DATA OF FIGURE 16 (RIGHT).

January 6, 2012 DRAFT

30

rate is too small to begin with, interference from N’s symbols rapidly degrades its link quality so as to make any

far-rate infeasible.

Therefore, the far user modulation and rate pair may be appropriately chosen based on the rate that the near

user’s traffic demands. For instance, when the near user’s spectral efficieny is 1 (QPSK-1/2), choosing BPSK-3/4

for the far user provides a rate gain of about 28% over TD (as compared to a gain of about 21% over TD for

QPSK-5/6), while when the near user’s spectral efficiency is 3, it is preferable to choose QPSK-5/6 for the far

user (over BPSK-3/4).

2) Impact of Imperfect Interference Cancellation at N: The deviation of α(k) from its ideal value β N(k) is a

measure of the residual far-user interference seen at N due to the imperfect cancellation of F’s symbols (even when

the far-packet is decoded correctly). The βN’s are calculated from the single-user results using (14). The α’s are

determined from the experiment. For K = 8, we find that when k = 6, α(k) = 0.13 ≥ βN(k) = 0.1. At small

near-rates the desired symbol stream (of near-symbols) has a much lower power than the interference symbol stream

(of far-symbols). In this regime, even small regeneration errors manifest as large residual interference, necessitating

an increase of α(k) beyond βN(k). For example, 1− βN(1) ≈ 90% of the transmit power is assigned to F. Even if

only 10% of this power remains after cancellation, it is still about the same as the signal power. As βN(k) increases,

so does the near-rate, thereby making the near-link susceptable to even smaller levels of residual interference. as

well.

The root cause of this problem lies in the small (but non-zero) estimation error in the channel frequency response

and a small error in compensating the carrier frequency and phase offsets. Although this level of inaccuracy may

result in relatively small losses in a single-user system (as shown in Figure 6), a multiuser system is much less

tolerant to these errrors as our results show. Despite this inaccuracy, we find that SC can still provide rate gains

using a reasonably well-designed single-user building blocks.

3) Modeling the Near-User Interference at the Far-User: We study the performance of F’s (maximum-likelihood)

demodulator for the three choices of the interfering (N’s) signal’s constellations—BPSK,QPSK,16QAM— and for

two different interferer strengths α = 0.2 and α = 0.8. F’s rate is maintained at BPSK-1/2. Indeed, as explained in

Subsubsection III-B2, the performance of the demodulator is dictated by the superconstellation with 2 bxN+bxF points;

its error probability critically depends on the effective minimum distance (11). Figure 18 depicts the far user PERs

versus the SINR at F which we define as

SINR � (1 − α)γF

1 + αγF
. (16)

We observe the following:

• In the weak interference regime (for α = 0.2, i.e., SIR ≈ 6 dB), it is seen that BPSK is the worst interferer.

For small α, the error probability arises primarily from the separation between the clusters (see Figure 17

(left)).

• In the strong interference regime (e.g., α = 0.8, i.e., SIR ≈ −6 dB), it is seen that 16QAM is the worst

interferer. When α is large, the clusters overlap and the error probability may be attributed to the high density

January 6, 2012 DRAFT

31

Far power Near power Far SNR Near SNR Far PER with Far PER with Far PER with
BPSK interferer QPSK interferer 16QAM interferer

0.3607 0.0906 0 -6 100 91.6 92
0.4541 0.1141 1 -5 88 39.7 48.8
0.5717 0.1436 2 -4 41.1 10.2 11.9
0.7198 0.1808 3 -3 16 1.8 1.9
0.9061 0.2276 4 -2 3.2

Table VII
FAR USER PER WITH DIFFERENT NEAR-USER MODULATION TYPES. α = 0.2. DATA SOURCE OF FIGURE 8 (TOP) IN .

of the clusters (see Figure 17 (right)).

Validity of the IAGN model: The rate constraint on the far-user in (4) is of the form R = W log(1 + SINR).

However, conditioned on N’s codebook, this interference is clearly not Gaussian. When the channel codes and the

detection process at F are allowed to be arbitrarily complex (e.g., allowing Gaussian signaling, ML decoding), the

combined effect of interference and noise can indeed be shown to be Gaussian for L → ∞ when the interference

(N’s signal) cannot be jointly decoded with the desired signal (F’s signal) [16], which is certainly the case for the

Gaussian BC. It is not clear if this remains valid when the choices of channel codes is restricted (e.g., to those

with finite L using finite constellations) and/or the receiver architecture (e.g., to demodulate-and-decode). Under

such constraints, it is of fundamental interest to check the validity of the Gaussian approximation. We clarify that

the interference considered here is from N’s symbols only, and not from other transmitters in the network.

Our results show that for SC-BICM systems with a demodulator structure described in Section III-B2, treating

the interference-plus-noise term as Gaussian perturbation can be quite inaccurate. For a small near-user power (i.e.,

small α), the cluster centers are well separated and each daughter point is likely to be close to its parent (see Figure

17 (left)). In this case, a BPSK interference distribution can place every daughter point at the farthest possible

distance (
√
α) from its parent. For Gaussian interference with the same power, 68% of all daughter points will

lie within a ball of radius
√
α centered at the parent point21. Thus for a given noise level, Gaussian interference

would result in fewer demodulation errors compared to BPSK interference: a Gaussian interference-plus-noise term

underestimates the number of decoding errors.

For large near-user power, the cluster centers become closer and the clusters begin to overlap (see Figure 17

(Right)), making the precise form of the interference distribution important. For a given interferer power, higher-

order interferer constellations (such as 16QAM) result in more densely packed clusters, which upon overlapping

result in a smaller effective minimum distance d
(F,N)
eff from (11). Viewed from this perspective, it is clear that a

Gaussian interferer would be the worst than either BPSK, QPSK, or 16QAM in that it results in infinitely dense

clusters. Thus, in the low SIR regime, a Gaussian interference-plus-noise term overestimates the number of decoding

errors. These trends are apparent from Figure 18. Measurement data is tabulated in Table VII and VIII.

21About 68% of values drawn from a normal distribution are within one standard deviation away from the mean.

January 6, 2012 DRAFT

32

Cluster

Daughter pointParent point

√
αγ √

αγ

2
√
(1− α)γ

2
√
(1− α)γ

Figure 17. Depiction of the superconstellation points in the weak (left) and strong (right) interference cases. Evidently, when α is small, the
PER depends on the cluster separation, while when α is large, the PER is determined by the cluster density.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

SINR (dB)

F
ar

 u
se

r
P

E
R

Far user: BPSK−1/2, α = 0.2 (SIR = 6 dB)

BPSK interferer
QPSK interferer
16QAM interferer
Gaussian interferer

−6.8 −6.7 −6.6 −6.5 −6.4 −6.3 −6.2 −6.1 −6
10

−2

10
−1

10
0

SINR (dB)

F
ar

 u
se

r
P

E
R

Far user: BPSK−1/2, α = 0.8 (SIR = −6 dB)

BPSK interferer
QPSK interferer
16QAM interferer
Gaussian interferer

Figure 18. Far user PER versus SINR for different near-user constellations.

IX. CONCLUDING REMARKS

A. Summary

We have presented a software-radio implementation of Superposition Coding using off-the-shelf single-user coding

and decoding blocks. We experimentally determine the set of achievable rate-pairs for this system under a packet

error constraint. Our results suggest that SC can provide substantial gains in spectral efficiencies over those achieved

by orthogonal schemes such as Time Division Multiplexing. Our findings also question the validity of treating inter-

user interference as Gaussian noise to measure system performance in practical systems, and thereby the validity

of the IAGN model for these systems. To the best of our knowledge, this is the first such attempt.

January 6, 2012 DRAFT

33

Far power Near power Far SNR Near SNR Far PER with Far PER with Far PER with
BPSK interferer QPSK interferer 16QAM interferer

0.3607 0.0906 0 6 100
0.4541 0.1141 1 7 92.1
0.5717 0.1436 2 8 23.6
0.7198 0.1808 3 9 1.3 100
0.9061 0.2276 4 10 86.2
1.1408 4.5415 5 11 33.1
1.4361 5.7174 6 12 6.7
3.6074 14.3615 16 10 100
4.5415 18.08 17 11 80.7
5.7174 22.7614 18 12 34
7.1978 28.6549 19 13 14.9
9.0615 36.0743 20 14 5.5

Table VIII
FAR USER PER WITH DIFFERENT NEAR-USER MODULATION TYPES. α = 0.8. DATA SOURCE OF FIGURE (BOTTOM) IN .

B. Discussion

In our investigation, we made some assumptions to simplify the design process and performance characterization.

We now discuss how our framework can be modified to investigate the value of SC even when these assumptions

are relaxed.

1) The channel ordering exploited for two-user SC in this report can be extended to three or more users, although

finding the rate-region experimentally can be more cumbersome due to the presence of two power variables

α1 and α2.

2) The code library that was held fixed in our design can in general be a design parameter by itself. This becomes

relevant when an SC system is to be built from scratch rather than on top of an existing single-user system

as in this report. Nonetheless, the current framework can be adopted to evaluate the performance of a given

library.

3) The BS determines α from its knowledge of the individual link SNRs. In practice, these can be obtained

via a feedback link. For every such SNR pair, the BS can choose an SC scheme by adopting the procedure

described in this report.

4) The “rate-centric” view in this report focuses on the spectral efficiency gains from SC (for a given reliability),

and has its roots in information theory. Viewing SC as a multiuser coding scheme, it is also possible to adopt

a “reliability-centric” view wherein one measures the reliability gains (due to SC’s coding gains) for a given

pair of spectral efficiencies. Although both viewpoints are equivalent, they differ greatly in their experimental

complexity. We study the latter problem in our recent submission [17] via on-air experiments.

January 6, 2012 DRAFT

34

C. Future Work

By experimentally demonstrating the benefits of SC using off-the-shelf single-user techniques, we have shown

that SC is a potentially valuable transmission scheme. Our work can be extended in several directions. For example,

the code library selection can leverage both advanced coding techniques such as turbo or LDPC codes and advanced

receiver architectures based on iterative interference cancellation(see, e.g., [18], [19] and the references therein).

Also, the principle of superposition can applied to other cases where signal superposition is known to be theoretically

optimal, e.g., in multiple access channels (models for cellular uplinks) and for certain classes of relay channels. In

these cases, the superposition process occurs at the receiver rather than at the transmitter in the BC; thus signals

that interfere have different propagation paths. This difference opens up a new set of problems in system design,

such as node synchronization, channel code selection and receiver design. Allowing multiple antennas at the TX

and/or RX adds another dimension to the design space. Another possible line of investigation is to analyze the

implications of SC for higher layers in the network stack. For example, the problem of scheduling multiple users

with an SC-enabled physical layer involves many interesting tradeoffs [20].

X. ACKNOWLEDGMENT

The support of NSF (grants CNS-1016742 and 0830651) and DARPA/IPTO IT-MANET program (grant W911NF-

07-1-0028) is gratefully acknowledged.

REFERENCES

[1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., John Wiley & Sons, Inc., 2006.

[3] J. Mitola III, “Software radios: Survey, critical evaluation and future directions,” IEEE Aerospace and Electronic Systems Magazine, vol.

8, no. 4, pp. 25-36, 1993.

[4] GNU Radio, http://www.gnu.org/software/gnuradio/.

[5] X. Li, W. Hu, H. Yousefizadeh, and A. Qureshi, “A case study of a MIMO SDR implementation,” in Proceedings of IEEE Military

Communications Conference (MILCOM), pp. 1-7, Nov. 2008.

[6] E. Bayraktaroglu, C. King, X. Liu, G.Noubir, R. Rajaraman, and B. Thapa, “On the performance of IEEE 802.11 under jamming,” in

Proceedings of The 27th IEEE Conference on Computer Communications (INFOCOM), pp. 1265-1273, Apr. 2008.

[7] K. Mandke, S.-H. Choi, G. Kim, R. Grant, R. C. Daniels, W. Kim, R. W. Heath, and S. M. Nettles, “Early results on Hydra: a flexible

MAC/PHY multihop testbed,” in Proceedings of IEEE 65th Vehicular Technology Conference (VTC2007-Spring), pp. 1896-1900, Apr.

2007.

[8] R. Alimi, L. Li, R. Ramjee, H. Viswanathan, and Y. R. Yang, “iPack: in-network packet mixing for high throughput wireless mesh

networks,” in Proceedings of The 27th IEEE Conference on Computer Communications (INFOCOM), pp. 66-70, Apr. 2008.

[9] R. K. Ganti, Z. Gong, M. Haenggi, S. Srinivasa, D. Tisza, S. Vanka and P. Vizi, “Implementation and experimental results of superposition

coding on software radio”, 2010 IEEE Conference on Communication (ICC 2010), May 2010.

[10] J. G. Proakis, Digital Communications, 4th ed., McGraw-Hill, 2000.

[11] A. G. Fabregas, A. Martinez and G. Caire, Bit-Interleaved Coded Modulation, Foundations and Trends in Communications and Information

Theory, Vol. 5:No 1-2 pp. 1-153, 2008.

[12] G. Caire, G. Taricco and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Transactions on Information Theory, Vol. 44, pp. 927-946,

May 1998.

January 6, 2012 DRAFT

35

[13] G. Caire and E. Viterbo, “Upper bound on the packet error probability of terminated trellis codes,” IEEE Communication Letters, Vol. 2,

pp. 2-4. Jan. 1998.

[14] J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and Practical Guide, Sams, 2001.

[15] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Transactions on Communications, vol.

45, pp. 1613-1621, 1997.

[16] F. Baccelli, A. El Gamal, and D. Tse, “Interference Networks with point-to-point codes”, IEEE Trans. Info. Theory, vol. 57, no. 5, pp.

2582-2596, May 2011.

[17] S. Vanka, S. Srinivasa and M. Haenggi, “Improving Broadcast Coverage via Superposition Coding: An Experimental Study”, manuscript

in preparation.

[18] R. Zhang and L. Hanzo, “A Unified Treatment of Superposition Coding Aided Communications: Theory and Practice,” IEEE

Communications Surveys and Tutorials, No. 99, pp. 1-18, July 2010.

[19] J. Andrews, “Interference Cancellation for Cellular Systems: A Contemporary Overview”, IEEE Wireless Communications Magazine, pp.

19-29, Apr. 2005.

[20] P. Vizi, S. Vanka, S. Srinivasa, M. Haenggi, and Z. Gong, “Scheduling using Superposition Coding: Design and Software Radio

Implementation,” IEEE Radio and Wireless Week 2011.

[21] F. Abbas, Simple User Manual for Gnuradio 3.1.1, GNU Radio, 2007.

January 6, 2012 DRAFT

	Introduction
	Main Contributions
	Report Overview

	Superposition Coding: From Theory to Practice
	An Information-Theoretic View of Superposition Coding on the Gaussian Channel
	Practical Design Issues

	Designing a Superposition-Coded System
	Practical SC using a Finite Code Library
	SC using a BICM Code Library
	The SC-BICM System
	A Theoretical Estimate of the Rate Region of an SC-BICM System in the High Reliability Regime

	A Design Example

	Implementing a Superposition-Coded System
	The Platform
	Packet Structure
	Single-User Characterization

	Modifications to Implement an SC-BICM System
	Transmitter Operation
	Receiver Operation

	GNU Radio Block Diagrams
	SC Transmitter Blocks
	SC Receiver Block

	Hardware Characterization
	Transmit Power Characterization
	Noise Figure Measurement
	SNR Estimation

	Experimental Results
	Emulating a Gaussian BC
	The Runtime Requirement
	The Rate Region Experiment
	Results
	Changing the Strength of the Far-Link
	Impact of Imperfect Interference Cancellation at N
	Modeling the Near-User Interference at the Far-User

	Concluding Remarks
	Summary
	Discussion
	Future Work

	Acknowledgment
	References

