A Practical Approach to Strengthen Vulnerable Downlinks via Superposition Coding

Sundaram Vanka*, Sunil Srinivasa+, and Martin Haenggi#

*Broadcom Corporation +LSI Corporation #University of Notre Dame

What is Superposition Coding?

- BS sends information to *two* users N (near) and F (far)

 → Communicating over a Broadcast Channel (BC)
- BS has full CSI: Gaussian BC [Cover06]¹
- BS has no CSI: Fading BC [Zhang09]²
- Capacity achieved by Superposition Coding (SC) and Successive Decoding (SD)

¹ T. Cover, and J. A. Thomas, Elements of Information Theory, 2nd ed., John Wiley & Sons, Inc., 2006.

Orthogonal Coding on the BC

 γ : the link SNR, $e(x) \triangleq exp(x) - 1$, u (resp. $\bar{u} = 1 - u$): fraction of slots to N (resp. F).

4 日 ト 4 同 ト 4 三 ト

SC as a Superior Multiuser Channel Code

Constraining $(ur_n, \bar{u}r_f)$ to be feasible with SC, **minimum** far SNR

$$\gamma_{\mathsf{f}}^*(\gamma_{\mathsf{n}}; ur_{\mathsf{n}}, ur_{\mathsf{f}}) = \frac{\gamma_{\mathsf{n}} \mathsf{e}(\bar{u}r_{\mathsf{f}})}{\gamma_{\mathsf{n}} - \mathsf{e}(ur_{\mathsf{n}})(1 + \mathsf{e}(\bar{u}r_{\mathsf{f}}))}.$$

- Packets encoded
 exactly at (ur_n, ūr_f)
- For each u, require $\alpha > e(ur_n)/\gamma_n$ with SC
- Coding gain (CG) increases with γ_n ⇔ pair F with high-SNR N!

Performance Gain (PG) in the Finite Blocklength Regime

- Non-zero decoding error probability or Packet Error Rate (PER) ε
- At PER = ϵ , typical packet requires $\frac{1}{1-\epsilon}$ transmissions to reach F
- Easy to measure the Reliability Gain $RG = \frac{1-\epsilon_{SG}}{1-\epsilon_{SG}}$

SC with Finite Blocklength Channel Codes

- IT result existential, not constructive
- Need to understand how SC works with well-known codes
- Identify key practical issues that arise in its implementation

Definition (Code library)

A collection of $M < \infty$ encoder-decoder function pairs with spectral efficiencies (aka "rates") $r_1 < r_2 \cdots < r_M$

Definition: Packet Error Rate (PER)

The probability of codeword decoding error

Definition (ϵ -feasible on a link)

A code with rate r is $\epsilon-{\rm feasible}$ on a link if the PER of a codeword encoded at r is no greater than ϵ

Important special case: N close to BS, F at cell-edge.

- $r_n = r_M$, $\bar{u}r_f$ is small (can set to r_1)
- Set $ur_M = r_k$, so that

 $u_k = r_k/r_M, r_f = r_1/\bar{u}_k, \ k \in \{1, \dots, M\}$

• If library has codes $r_a < r_f < r_b$, time-share between r_a and r_b Compare SC using (r_k, r_1) with TD using $(r_M, r_1/u_k)$, for $k = 1, \ldots, M$.

The BICM Code Library

- Pairs powerful binary codes with well-known modulation techniques [Caire98]³
- Combines the advantages of signal space coding with well-known binary codes
- Flexible and easy to implement
- Coding technique in DSL, Wi-Fi, WiMAX...

In our library:

- Modulations: BPSK, QPSK, 16-QAM
- Channel codes:
 - Standard const. length 7 rate-1/2 convolutional code with generator matrix [133,171]
 - Rates 2/3, 3/4, 5/6 punctured versions of mother code

³ G.Caire, G. Taricco and E.Biglieri, "Bit-Interleaved Coded Modulation", IEEE Trans. IT;:May 1998. 🔫 🗄 😽 😤 👘 😪 🗠 🔍

Frame Structure

- TS1: Packet acquisition, timing and frequency sync. Duration $T_{\rm s} = 48 \mu s$
- TS2: Channel estimation. Duration $T_{\rm ch} = 34 \mu s$

A B F A B F

Top-level Block Diagram

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The USRP Board

- Flexible
 - Multi-Protocol
 - Multi-Band
- Board has FPGA, DAC/ADC, RF Frontends
- USB 2.0 Interface with Linux PC
- Software-based DSP on GNURadio
 - Open Source
 - In-built USRP drivers

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setting up the BC

P : BS power, α : N's share $\gamma_{\rm n} \propto \alpha P \triangleq P_{\rm n}$ $\gamma_{\rm f} \propto \bar{\alpha} P \triangleq P_{\rm f}$ Rate r is reliable \leftrightarrow PER $\lesssim 0.1$ For k = 1, ..., M: SC Step: **Step 1:** Set $P_n = 0 \& \uparrow P_f$ s.t. r_1 is reliable **Step 2:** $\uparrow P_n$ s.t. r_k is reliable **Step 3:** Keeping P_n/P_f constant \uparrow $P_{\rm f}$ s.t. r_1 is reliable **TD Step:** Find PER_f at BS power $P_{\rm n} + P_{\rm f}$ and rate r_1/u_k

Experimental Results

- $\bar{u}r_{\rm f} = 0.5$ [bps/Hz], SC always uses BPSK-1/2
- 16QAM-5/6 always feasible at N with full power
- SC adjusts N's power and code to provide the same rate as TD

	SC			TD		
u	$\gamma_{\rm f}$ (dB)	SIR (dB)	F PER	TD peak rate	F PER	RG
0.1	8.8	1	7%	Infeasible	N/A	N/A
0.2	7.4	1.95	6%	2.5	100%	∞
0.4	5.5	5	3%	1.25	75%	3.83
0.55	4.3	5	5%	1.11	38%	1.53
0.8	2.7	6	6%	0.63	37%	1.49
0.85	2.6	7.5	5%	0.59	29%	1.34

- Experimentally demonstrated a practical approach to exploit superposition codes
- **Specific decoding strategies** (e.g,. demodulate-and-decode) can render the Gaussian approximation for inter-user interference inaccurate
- Signal superposition opens up new possibilities for link-layer scheduling policies [Vizi11]⁴

⁴ P. Vizi, S. Vanka *et al.*, "Scheduling using Superposition Coding: Design and Software Radio Implementation", IEEE Radio and Wireless Week, Jan. 2011.