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What is Superposition Coding?
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’Packetized’ communication over a Broadcast Channel ↔
Base Station transmits to two users N (near) and F (far).

Conventional strategies: establish orthogonal channels to the
users, e.g., Frequency/Time Division Multiplexing.

Superposition Coding: transmits a linear combination of the
individually-coded user waveforms over a common interval/band.
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Why Superposition Coding?

N enjoys a higher signal-to-interference-and-noise ratio (SINR);
thus, it can also decode the packets meant for F.

F decodes its packets in the presence of (little) interference
from the near user’s signal.
N performs successive interference cancellation before decoding
its own packets.

Superposition Coding (SC) and Successive Decoding (SD)
achieves capacity in a scalar Gaussian broadcast channel !

The achievable rate pairs are strictly larger than that obtained
by any orthogonal scheme, when the individual channel qualities
are different [Tse and Viswanath ’05].
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Scheduling based on Superposition Coding

A Time Division (TD)-based scheduler serves N and F in an
orthogonal fashion.

N is bandwidth-limited, and benefits from an increased share
of bandwidth.
F is SINR-limited, and benefits from an increased share of
power.

The SC-based scheduler judiciously reallocates transmit power
and bandwidth to provide an improved performance.

Whenever F is to be served, the BS can superimpose N’s
packets onto F’s packets.
N thus enjoys a higher bandwidth; its share of transmit power
can then be reduced and vested in the transmissions for F.

=⇒ Each user gets what he wants !

Vizi et al. (Univ. of Notre Dame) IEEE RWS 2011 01/18/2011 4 / 15



The Big Picture

TD−based Scheduler

Practical SC Scheduler

Full SC Scheduler

TN

TF

For each throughput pair obtained by the TD-based scheduler, we
aim to achieve a higher throughput pair via reallocation of resources.

Complexity Decoding Delay Optimal?

Full SC High Large Yes

(Gaussian signalling) (Long blocklength)

Practical SC Low Design-dependent No

(Finite constellation) (Adjustable)
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Prior work
SC-based greedy scheduler (simulation only) [Li et al. ’07].

Implementation of successive decoding [Gollakota et al. ’09].

PHY implementation of an OFDM-based SC system on the
GNURadio/USRP platform [Ganti et al. ’10].

Our Contributions
1 Design an intelligent scheduler based on SC and SD that

outperforms orthogonal schemes.

2 Implement and verify the scheduler performance experimentally
on a software-defined radio platform.
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Implementation for Real-Time Processing

Close-up of USRP board

Hardware: USRP 1
(Analog and RF
front-end)

Programmable
Channelization
USB 2.0 Interface

Software: GNU Radio
(ver. 10923) & its
built-in libraries

Open-Source
Real-time Signal
Processing on a
GPP
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Tx and Rx Block Diagrams
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Block diagram of the transmitter.
Powers allocated to N and F are α and 1 − α respectively.
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Block diagram of the receiver.
The near user employs successive decoding to decode its payload bits.
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Frame structure
Tp Tch Thr

48µs 60µs 72µs

Preamble Header

Training
Sequences

Near User Packet

Far User Packet

User Payloads
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System parameters

Center Frequency 903 MHz
System Bandwidth 1 MHz

Transmission Scheme 16-tone OFDM
Tones 8 data, 4 pilot, 4 null

CP Length 4µs
Gen. Poly. for Conv. Code [133, 171]
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A Design Example

The TD-based Scheduler
Notation:

u denotes the fraction of transmissions reserved for each user.

ℓ denotes the packet size

ρ denotes the the data rate.

The packet transmission time is τ = ℓ/ρ.
The fraction of times spent for transmissions to the user are

wN =
uNτN

uNτN + uFτF

wF = 1 − wN

...

Pav

τN τF

1

t
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A Design Example (Contd.)

The SC-based Scheduler
Lower N’s rate to ρ ′

N = wNρN, while ρ ′
F = ρF.

Modify the packet lengths such that the packets can be
“completely” overlapped, i.e., set τ ′

N = τ ′
F.

Choose a suitable value of α < 1 such that N’s reliability
improves; F’s transmissions are performed at higher power.

w ′
N =

uN

uN + uF

w ′
F = 1 − w ′

N

...
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τ ′
N τ ′
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α
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F
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Consider the operating point uN = 3/4.
TD-based Scheduler

N: 300 bytes; 16QAM, rate 3/4; ρN = 1.2 Mbps.

F: 300 bytes; BPSK, rate 1/2; ρF = 0.2 Mbps.

SC-based Scheduler

wN = 1/3: N’s rate is lowered to 0.4 Mbps (QPSK, rate 1/2).

Packets can be “overlapped”: ℓF = 150 bytes.

Ratio of received power to noise variance at N is

P16-QAM, rate 3/4

PQPSK, rate 1/2

=
(Eb/N0)16-QAM, rate 3/4

(Eb/N0)QPSK, rate 1/2

1.2Mbps

0.4Mbps
.

P16-QAM, rate 3/4 > 3 × PQPSK, rate 1/2 or α < 1/3.
F’s power is boosted by 167 % !
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Scheduler parameters

Operating point uN = 1 uN = 3/4 uN = 2/3 uN = 0
Near user’s 300 300 300

packet length bytes bytes bytes
Far user’s 150 200 300

packet length bytes bytes bytes
Near user’s 16-QAM, QPSK, BPSK,

modulation/coding rate 3/4 rate 1/2 rate 3/4
Far user’s BPSK, BPSK, BPSK,

modulation/coding rate 1/2 rate 1/2 rate 1/2
Near Tx power 1 < 0.33 < 0.25 0
Far Tx power 0 > 2.67 > 2.25 1
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Experimental Results
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SC-based scheduler results in

Lower PERs for both N and F.

A larger throughput region (Ti = wiρi(1 − PERi)).
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Conclusions and Future Work

Conclusions
Realized superposition coding on a software-defined radio.

Designed and implemented an SC-based scheduler.

Obtained throughput gains of up to 25% over orthogonal
schemes.

Future Work
SC benefits under different data traffic models.

Trade-off between reliability and delay for far user.

Peak-to-average power ratio in transmission.
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