Scheduling using Superposition Coding: Design and Software Radio Implementation

P. Vizi, S. Vanka, S. Srinivasa, M. Haenggi, and Z. Gong

Emerging Wireless Architectures Laboratory University of Notre Dame

Jan 18, 2011

What is Superposition Coding?

- Packetized' communication over a Broadcast Channel ↔ Base Station transmits to two users N (near) and F (far).
- Conventional strategies: establish orthogonal channels to the users, e.g., Frequency/Time Division Multiplexing.
- **Superposition Coding**: transmits a linear combination of the individually-coded user waveforms over a common interval/band.

- N enjoys a higher signal-to-interference-and-noise ratio (SINR); thus, it can also decode the packets meant for F.
 - F decodes its packets in the presence of (little) interference from the near user's signal.
 - N performs *successive interference cancellation* before decoding its own packets.
- Superposition Coding (SC) and Successive Decoding (SD) achieves capacity in a scalar Gaussian broadcast channel !
 - The achievable rate pairs are strictly larger than that obtained by any orthogonal scheme, when the individual channel qualities are different [Tse and Viswanath '05].

Scheduling based on Superposition Coding

- A Time Division (TD)-based scheduler serves N and F in an orthogonal fashion.
 - N is **bandwidth-limited**, and benefits from an increased share of bandwidth.
 - F is **SINR-limited**, and benefits from an increased share of power.
- The SC-based scheduler judiciously reallocates transmit power and bandwidth to provide an improved performance.
 - Whenever F is to be served, the BS can superimpose N's packets onto F's packets.
 - N thus enjoys a higher bandwidth; its share of transmit power can then be reduced and vested in the transmissions for F.
 - \implies Each user gets what he wants !

The Big Picture

For each throughput pair obtained by the TD-based scheduler, we aim to achieve a higher throughput pair via reallocation of resources.

	Complexity	Decoding Delay	Optima	?
Full SC	High	Large	Yes	
	(Gaussian signalling)	(Long blocklength)		
Practical SC	Low	Design-dependent	No	
	(Finite constellation)	(Adjustable)	< ≣ <> ■	5
Vizi <i>et al.</i> (Univ. of Notre	Dame) IEEE RWS 20	11	01/18/2011	5 /

Prior work

- SC-based greedy scheduler (simulation only) [Li et al. '07].
- Implementation of successive decoding [Gollakota et al. '09].
- PHY implementation of an OFDM-based SC system on the GNURadio/USRP platform [Ganti et al. '10].

Our Contributions

- Design an intelligent scheduler based on SC and SD that outperforms orthogonal schemes.
- Implement and verify the scheduler performance experimentally on a software-defined radio platform.

Implementation for Real-Time Processing

Close-up of USRP board

- Hardware: USRP 1 (Analog and RF front-end)
 - Programmable
 Channelization
 - USB 2.0 Interface
- Software: GNU Radio (ver. 10923) & its built-in libraries
 - Open-Source

< □ > < 同

 Real-time Signal Processing on a GPP

Tx and Rx Block Diagrams

Block diagram of the transmitter.

Powers allocated to N and F are α and $1 - \alpha$ respectively.

Block diagram of the receiver.

The near user employs successive decoding to decode its payload bits.

System parameters

Center Frequency	903 MHz	
System Bandwidth	1 MHz	
Transmission Scheme	16-tone OFDM	
Tones	8 data, 4 pilot, 4 null	
CP Length	4μs	
Gen. Poly. for Conv. Code	[133, 171]	

(ロ) (部) (目) (日) (日)

A Design Example

The TD-based Scheduler

Notation:

- u denotes the fraction of transmissions reserved for each user.
- ℓ denotes the packet size
- ρ denotes the the data rate.

The packet transmission time is $\tau = \ell/\rho$. The fraction of times spent for transmissions to the user are

$$w_{N} = \frac{u_{N}\tau_{N}}{u_{N}\tau_{N} + u_{F}\tau_{F}}$$

$$w_{F} = 1 - w_{N}$$

$$P_{av}$$

$$1$$

$$T_{N} = \tau_{F}$$

The SC-based Scheduler

- Lower N's rate to $\rho_N' = w_N \rho_N$, while $\rho_F' = \rho_F$.
- Modify the packet lengths such that the packets can be "completely" overlapped, i.e., set $\tau_N'=\tau_F'.$
- Choose a suitable value of $\alpha < 1$ such that N's reliability improves; F's transmissions are performed at higher power.

Consider the operating point $u_N = 3/4$. **TD-based Scheduler**

- N: 300 bytes; 16QAM, rate 3/4; $\rho_{\text{N}}=1.2$ Mbps.
- F: 300 bytes; BPSK, rate 1/2; $\rho_{\text{F}}=0.2$ Mbps.

SC-based Scheduler

- $w_N = 1/3$: N's rate is lowered to 0.4 Mbps (QPSK, rate 1/2).
- Packets can be "overlapped": $\ell_{\text{F}} = 150$ bytes.
- Ratio of received power to noise variance at N is

 $\frac{P_{16\text{-}QAM, \text{ rate } 3/4}}{P_{\text{QPSK, rate } 1/2}} = \frac{(E_b/N_0)_{16\text{-}QAM, \text{ rate } 3/4}}{(E_b/N_0)_{\text{QPSK, rate } 1/2}} \frac{1.2\text{Mbps}}{0.4\text{Mbps}}.$

•
$$P_{16-QAM, \text{ rate } 3/4} > 3 \times P_{QPSK, \text{ rate } 1/2}$$
 or $\alpha < 1/3$.

F's power is boosted by 167 % !

Scheduler parameters

Operating point	$u_{\sf N}=1$	$u_N = 3/4$	$u_N = 2/3$	$u_N = 0$
Near user's	300	300	300	
packet length	bytes	bytes	bytes	
Far user's		150	200	300
packet length		bytes	bytes	bytes
Near user's	16-QAM,	QPSK,	BPSK,	
modulation/coding	rate 3/4	rate 1/2	rate 3/4	
Far user's		BPSK,	BPSK,	BPSK,
modulation/coding		rate 1/2	rate 1/2	rate 1/2
Near Tx power	1	< 0.33	< 0.25	0
Far Tx power	0	> 2.67	> 2.25	1

Experimental Results

PER vs User SNR ($u_{N}=2/3)$

Throughput region (SNR_N = 16 dB, SNR_F = 4 dB)

SC-based scheduler results in

- Lower PERs for both N and F.
- A larger throughput region $(T_i = w_i \rho_i (1 PER_i))$.

Conclusions and Future Work

Conclusions

- Realized superposition coding on a software-defined radio.
- Designed and implemented an SC-based scheduler.
- Obtained throughput gains of up to 25% over orthogonal schemes.

Future Work

- SC benefits under different data traffic models.
- Trade-off between reliability and delay for far user.
- Peak-to-average power ratio in transmission.