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Introduction

A Surge of Research Developments: CDMA, OFDM, MIMO, Turbo codes.

“Tetherless Connectivity” single-hop cellular, WLAN

“Ubiquitous connectivity” multihop multihop cellular, ad hoc

DS
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A multihop network with a single source-destination pair.
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Why Multihop Wireless Networks?

Multihop networks are highly appealing:

Require less per-node power.

Operate in a decentralized fashion.

Lack single points of failure.

Rapidly deployable and reconfigurable.

=> facilitate ‘anywhere-anytime” communication.

Immediate applications:
Battlefield networks, mesh networks, sensor networks.
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Motivation

However, the lack of a capacity theory capable of quantifying the
performance of a general multihop network has stunted its
development and commercialization [Andrews ’08].

Classical information theory is inadequate to study multihop networks
(N nodes => (N2 − N) possible one-way interactions).
Interdependencies between flows across various links need to be
explicitly considered during analysis and design.
An adaptive cross-layer design approach needs to be implemented.

Consequently, we need to consider other subject areas to obtain
ideas and methodologies. We use a combination of tools:

Poisson Shot Noise Theory Stochastic Geometry well-known

Totally Asymmetric Simple
Exclusion Process (TASEP)

Statistical Mechanics unfamiliar
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Outline

Analyze the linear network topology.

Propose a distributed transmission policy for regulating packet flow.
Characterize its end-to-end delay and throughput performances.

Study networks with more intricate topologies.

Consider networks with intersecting routes.
Propose a new framework that helps evaluate their throughput and
delay.

Investigate the throughput-delay-reliability (TDR) tradeoffs.

Study the delay-throughput tradeoffs at unit reliability.
Show that dropping a few packets can actually lead to an improved
network performance.
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Part 1: Throughput and Delay Analysis of Line Networks
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System Model

Nodes are located on a line with separation d.

Time is slotted to the duration of a packet.

Each transmitting node transmits at unit power.

All nodes use the same channel;

Attenuation in the channel: product of

Large scale path loss with exponent γ.
Small-scale Rayleigh fading.

Success probability across a link: ps = Pr(SINR > Θ).
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Prior Work

Focuses primarily on mean delays, delay correlations are neglected
[Gallucio ’09, Jun ’09].

Considers very small [Ryoki ’02, Daduna ’00] or infinite networks
[Gupta ’00].

Neglects queueing delays/ assumes infinite buffer capacities/
considers backlogged nodes [Abouei ’07, Yang ’03].

Our Contributions

Advocate a revised transmission scheme to overcome current
shortcomings.

Draw analogies between packet flow in the multihop line network and
the Totally Asymmetric Simple Exclusion Process (TASEP).

Provide results that are scalable via a clean, and rigorous analysis.
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Existing Transmission Policies for Line Networks

Multihop networks are not just meant to carry small volumes of data,
but may also be intended for broadband services, e.g., mesh networks.

However, existing buffering policies with large buffer sizes and a
drop-tail policy have inherent drawbacks: large queueing delays,
non-coordinated transmissions, buffer overflows [Xu ’01, Fu ’03].

Consequently, the end-to-end delay and throughput performance in
such systems is disappointing.
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A Revised Transmission Policy for Line Networks

The Three Rules
1 All the queueing is performed at the source node (while relay nodes

have unit buffer sizes).

2 Transmissions are not accepted by nodes if their adjacent node’s
buffer already contains a packet.

3 Packets are retransmitted until successful reception (100% reliability).

A Tx can occur only if node has a packet and its adjacent node none.
This scheme is completely distributed and helps regulate the flow of
packets in the network by spacing packets.

(SOURCE)

(DEST.)
0 1 2 3 N−2 N−1 N

ddd d

pspsps

Filled circles: full buffers; Empty circles: buffers with room
Sunil Srinivasa () Ph.D. Defense Talk 10 / 45



Advantages of the Single-Buffer Scheme

Lowers average in-network delay.

- Stacking-up of packets in buffers is minimal.

Lessens the variance of the delay.

- Generally requires buffering at the source. However, packet delays are
more tightly controlled.

- Depending on the time a packet spends in its buffer, the source itself
can judiciously decide whether to drop it or not.

Reduces hardware cost and energy consumption.

Minimizes end-to-end buffer usage [Venkataramanan ’10], provides
buffering gain [Bhadra ’06], self-organizes network operation [Dousse
’07].
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A Review of TASEPs with Open Boundaries

The TASEP models the dynamics of self-driven systems with several
interacting particles; is a paradigm for non-equilibrium systems .

The source site always has a particle.

Totally Asymmetric: Particles are injected at the leftmost site, and
they hop rightward until they exit the system.

Simple Exclusion Process: Each site can have a particle or not.

A set of sites is picked, the particles on those sites attempt to hop.

α and β represent the influx and outflux rates.

Particles (filled circles) moving rightward is equivalent to holes
(empty circles) moving leftward: particle-hole symmetry.
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Note the analogies

Sites ⇔ Relay nodes.

Particles ⇔ Packets.

Exclusion principle ⇔ Unit buffer sizes.

Hopping probability ⇔ Link reliability.

DS

Destination

TASEP Sites

TASEP
Source

Original
Source

αp βpp

1 i i + 1 N

TASEP-equivalent network flow.

The configuration of site i, 1 6 i 6 N at time t is τi[t] ∈ {0, 1}.

τ0[t] = 1,∀t ⇔ backlogged source.

MAC scheme: related to the TASEP updating procedure -
random-sequential, ordered-sequential, sublattice parallel, parallel.
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r-TDMA-based Line Network

MAC: randomized TDMA (r-TDMA): Tx node in each slot is chosen
uniformly randomly (w.p. 1/(N + 1)) ⇔ random sequential TASEP.

Since interference is absent in the system, the success probability
across each link is ps = P(SNR > Θ) = exp(−ΘN0d

−γ).

Metrics of Interest

The throughput T , is defined as the average number of packets
successfully delivered (to the destination) in unit time.

The end-to-end delay, D, is defined as the number of time slots it
takes for the packet at the head of the source node to successfully
hop to the destination.
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r-TDMA-based Line Network: Steady State

We primarily study the system behavior in the long-time limit.

In the long time limit (t → ∞), the probability of finding the system
in configuration τ[t] = (τ1[t], . . . , τN[t]) becomes independent of t.

With α = β = 1 and p = ps,

P(τ) =
〈W|

∏N
i=1(τiD + (1 − τi)E)|V〉

〈W|CN|V〉 , (“bra-ket” notation)

where

D =
1

ps















1 1 0 0 . . .
0 1 1 0 . . .
0 0 1 1 . . .
0 0 0 1 . . .
...

...
...

...
. . .















, E = DT , C = D + E

〈W| = (1, 0, 0, . . . ) and |V〉 = (1, 0, 0, . . . )T .
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Steady State Probabilities

For small N, the steady state probabilities may be computed in a
straightforward manner.

For e.g., when N = 1,

P(0) =
〈W|E|V〉
〈W|C|V〉 = 1/2, and P(1) =

〈W|D|V〉
〈W|C|V〉 = 1/2.

For large N, we may use the following properties to compute the P’s.

C = D + E = psDE.

pN
s 〈W|CN|V〉 =

(2N+2)!
(N+2)!(N+1)! .

For e.g., when N = 6,
P(1, 0, 1, 0, 1, 0) = 0.0326.
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r-TDMA-based Line Network: Steady State Occupancies

The occupancy of node i, 1 6 i 6 N

P(τi = 1) = Eτi =
1

2
+

1

4

(2i)!

(i!)2
(N!)2

(2N + 1)!

(2N − 2i + 2)!

[(N − i + 1)!]2
(N − 2i + 1).

The occupancies are independent of ps!
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Notice the particle-hole symmetry. Eτi = 1 − EτN+1−i.
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r-TDMA-based Line Network: Steady State Throughput

Theorem

For the r-TDMA-based line network with N nodes, the throughput (or
“current”) at steady state is

T =
psEτN

N + 1
=

ps(N + 2)

2(N + 1)(2N + 1)
.

T 6 ps/4 and T ∼ ps/(4N).

Since the network reliability is 100%, the rate of packet flow is a
constant, i.e., T = psE[τi(1 − τi+1)]/(N + 1).

Corollary

(Little’s Theorem) The average in-network end-to-end delay is

EDe2e =

∑N
i=0 Eτi

T
=

2N2 + 3N + 1

ps

.
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r-TDMA-based Line Network: Steady State Delays

We have also derived the pmf of the packet delay at node i, 0 6 i 6 N.
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Only the delay at the final relay node follows a geometric distribution.
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Remarks

Our analysis is clean, yet rigorous, and thus allows for a good
understanding of the dynamics of packet transport in line networks.

Our results are scalable with the number of nodes, and thus offer
insights towards solving issues such as the long-hop versus the
short-hop problem in line networks.

The TASEP is a powerful tool for the modeling and analysis of line
networks.
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Part 2: Throughput Analysis of Networks with Complex Topologies
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Introduction

In general, ad hoc networks have complex topologies.

Multiple source-destination pairs.
Intersecting routes: merging and splitting of routes.

Prior work uses Kleinrock’s independence assumption to neglect
correlations between flows.

Propose the partial mean-field approximation (PMFA), a
framework that helps tightly approximate the throughput of networks
with arbitrary topologies.
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Two Two-hop Flows via a Common Relay

R

S1

S2

D1

D2

ω

1 − ω

Two flows S1 → R → D1 and S2 → R → D2 occurring via the
common relay node R.

R has a buffer size of 2, one for each flow passing through it.

Priority-based scheduling with parameter ω.
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Two Two-hop Flows via a Common Relay (Contd.)

Let τ
[i]
j represent the steady state configurations for the buffers

across the two flows, i = {1, 2}, for each of the three nodes involved
in each flow, numbered j = {0, 1, 2}.

The throughput across each link is the same:

E

[

1 − τ
[1]
1

]

= E

[

τ
[1]
1

(

1 − (1 − ω) τ
[2]
1

)]

,

and
E

[

1 − τ
[2]
1

]

= E

[

τ
[2]
1

(

1 − ωτ
[1]
1

)]

.
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Two Two-hop Flows via a Common Relay (Contd.)

Use the mean-field approximation (MFA), according to which all the
correlations between the buffer occupancies are neglected.

E

[

τ
[j]
i τ

[l]
k

]

= Eτ
[j]
i Eτ

[l]
k ,

Solving the two equations simultaneously, we obtain

T [1](ω) =
psEτ

[1]
1

3
=

ps

(

2ω − 3 +
√

4ω2 − 4ω + 9
)

12ω
.

T [1](1) = ps/6, while T [1](0) = ps/9.
T [1](0.5) = T [2](0.5) = ps(

√
2 − 1)/3.
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The Partial MFA (PMFA)

Theorem

The throughput across a cut in the network comprising n nodes with
influx and outflux rates and hopping probability α, β and ps respectively is
given by

T(α,β,n) =

{
ps/(N + 1) × min{α,β} n = 0

ps/(N + 1) × Z(α,β,n−1)
Z(α,β,n)

n > 1,

where Z(α,β, 0) = 1 and

Z(α,β,n) =

n∑

i=1

i(2n − 1 − i)!

n!(n − i)!

(1/β)i+1 − (1/α)i+1

1/β − 1/α
,n > 1.
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A Toy Example

I II

S1

S2

R1

R2 R3 R4

R5

R6 R7 R8

D1

D2

ω1

1 − ω1

ω2

1 − ω2

A toy example consisting of two multihop flows S1 → D1 and S2 → D2.
The dotted lines I and II represent two cuts along the flow.

Set Eτ
[1]
1 = x, Eτ

[1]
5 = y, Eτ

[2]
1 = z and Eτ

[2]
5 = w.

T(1,1−x,1)=T(x(1−(1−ω1)z),1−y,3), T(1,1−x,1)=T(y(1−(1−ω2)w),1,1)

T(1,1−z,1)=T(z(1−ω1x),1−w,3), T(1,1−z,1)=T(w(1−ω2y),1,1)
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A Toy Example (Contd.)
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0.024

T
[1

]

N = 5, ω
2
 = 0.5, p

s
 = 0.75

 

 

Empirical
Numerical (PMFA)

ω1
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Part 3: TDR Tradeoffs in Multihop Networks with Random Access
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Introduction

Performance goals in multihop networks often conflict with one
another.

- Hardly possible to guarantee a high rate of transmission in conjunction
with reliable packet delivery and low latency.

In scenarios where reliable delivery is not critical, one can have the
nodes forcibly drop a small fraction of packets.

We characterize the throughput-delay-reliability (TDR) tradeoffs in
multihop networks.
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System Model

Source nodes:
homogeneous PPP (δ).

Relays and destinations:
homogeneous PPP
(1 − δ).

For each source node, the
destination node is chosen
at a random orientation,
and at a random finite
distance.

Homogeneous network
=> sufficient to consider
the “typical” flow.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10
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−6
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−2

0

2

4
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8

10
φ = π/2, δ = 0.05, n = 1

Each destination is assumed to be
located 5 nearest-neighbor (n = 1) hops

away from its source.
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System Model (Contd.)

Routing: each node that receives a packet relays it to its
nth-nearest-neighbor (n > 1) in a sector of angle φ ∈ [0,π] towards
the destination.

φ/2

D

i

i + 1
i + 2

φ/2
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MAC Scheme: Slotted ALOHA

In each time slot, every node having a packet independently transmits
w.p. q or remains idle w.p. 1 − q.

=> simultaneous transmissions lead to interference.

Performance Metrics: TDR

The per-flow throughput T , is defined as the average number of
packets successfully delivered (to the destination) in unit time, along
a typical flow in the network.

The mean end-to-end delay, D, is defined as the average number of
time slots it takes for the packet at the head of the source node to
successfully hop to the destination.

The end-to-end reliability R is defined as the fraction of packets
generated at the source that are eventually delivered.
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The Regime R = 1

Use some ideas from the parallel TASEP literature.

Theorem

For an ALOHA-based line flow along N relays, the steady state throughput
at full reliability (R = 1) is

T =
qpsB(N)

B(N + 1) + qpsB(N)
,

while the average end-to-end delay is given by

D = (1 + N/2)/T .

where B(0) = 1, and

B(k) =

k−1∑

j=0

1

k

(

k

j

)(

k

j + 1

)

(1 − qps)
j, k > 0.
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The Regime R = 1 (Contd.)
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For each value of N, the TD curve is a hyperbola.
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The Regime R < 1

When R = 1, D and T performances are poor at small ps.

Nodes can choose to drop a small fraction of packets (R < 1).

- Each node having a packet decides to drop the packet in its buffer or
not stochastically w.p. ξ.

For clarity, we consider the following two regimes separately.

The Noise-Limited Regime: ps = Pr(SNR > Θ)

Noise power in the network is much stronger than the interference.

The Interference-Limited Regime: ps = Pr(SIR > Θ)

Interference power in the network is much stronger than noise.

Also covers the regime wherein the interference and noise powers are
comparable.
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The Regime R < 1 (Contd.)

System Evolution: The following events affect τi:

a) Node i − 1 transmits its packet to node i.
b) Node i transmits its packet to node i + 1.
c) Node i drops its packet.

Employing mean-field theory, we obtain at steady state,
E limt→∞ ∆τi[t] = 0 for 1 6 i 6 N, i.e.,

ps(1 − ξ)q
[

Eτi−1(1 − Eτi)
︸ ︷︷ ︸

a)

− Eτi(1 − Eτi+1)
︸ ︷︷ ︸

b)

]

− ξEτi︸ ︷︷ ︸
c)

= 0.

The steady state occupancies Eτi may be obtained by numerically
solving these N non-linear equations.
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The Regime R < 1 (Contd.)

1 The steady-state throughput is

T = qpsEτN.

2 The mean end-to-end delay is

D =

N∑

i=0

s−1
i ,

where si = qps(1 − Eτi+1).

3 The end-to-end reliability of the network is

R =

N∏

i=0

si(1 − ξ)

si + ξ − siξ
.
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The Noise-Limited Regime; R < 1
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ξ = 0.001
ξ = 0.01
ξ = 0.025
ξ = 0.05

Increasing ξ helps reduce the end-to-end delay significantly
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The Noise-Limited Regime; R < 1 (Contd.)
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However, the throughput and reliability performances worsen.
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The Interference-Limited Regime; R < 1

The average number of potential interferers in each flow is

1 +
∑N

i=1 Eτi.

- The set of interferers (approximately) forms a PPP with density

λI = δq
(

1 +
∑N

i=1 Eτi

)

.

The probability of a successful transmission for a typical link is

ps '





(1 − δ)φ

(1 − δ)φ + 2δq
(

1 +
∑N

i=1 Eτi

)

c





n

.
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The Interference-Limited Regime; R < 1 (Contd.)
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When δ is small, increasing the packet dropping probability ξ reduces
the system throughput.

As δ gets larger, dropping a few packets helps mitigate the
interference, and the throughput across a typical flow improves.
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The Interference-Limited Regime; R < 1 (Contd.)
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With increasing ξ or decreasing δ, the mean end-to-end delay decreases;
the reliability also suffers.
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Summary

TASEP is a strong tool for analyzing multihop networks.

We hope that this introductory work instigates interest in solving
other relevant wireless networking problems:

Other MAC schemes: ordered sequential (TDMA), sublattice parallel
update (spatial TDMA).
Bidirectional traffic: ASEP.
Multiple-sized buffers: K-exclusion processes.
TDR tradeoffs for other traffic models and sophisticated packet
dropping strategies: Langmuir kinetics
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EXTRA SLIDES.
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Optimality of ALOHA: The Sufficiency of Small Buffers

1

m3

ml

l

S D

Phase 3

Phase 2

Phase 1

time

Node 1098765432

The optimal scheduling assignment for a line network with N = 10.

Optimal spatial reuse parameter is m = 3.

Interference induces a natural spacing between packets.

ALOHA with contention probability 1 is optimal.

Small buffers (as low as unit size) are sufficient for the optimal
operation of the network.
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