Implementation and Experimental Results of Superposition Coding on Software Radio

R. K. Ganti, Z. Gong, **M. Haenggi**, C.-H. Lee, S. Srinivasa, D. Tisza, S. Vanka, and P. Vizi

Network Communications and Information Processing Laboratory University of Notre Dame

May 26, 2010

(日)

1 Introduction

- 2 Implementation Details
- 3 Implementation Issues

4 Conclusions and Future Work

Introduction

What is Superposition Coding?

- BS sends information to *two* users N (near) and F (far) ↔ Communicating over a Broadcast Channel (BC)
- BS has full CSI: Gaussian BC [Cover72]
- BS has no CSI: Fading BC [Li01, Zhang09]
- Capacity achieved by Superposition Coding (SC) and Successive Decoding (SD)

Prior Work and Contributions

Prior Work

- Single-User MIMO-OFDM implementation [Mandke07, Li08]
- Signal Superposition on GNURadio [Li09]: No hardware

Our Contributions

- 1 First **Multi-user** OFDM PHY implementation using SC on the GNURadio/USRP platform
- 2 Packet Error Rate (PER) evaluation with USRP in loop

From Theory to Practice

	Complexity	Decoding Delay	Optimal?
Full SC	High	Large	Yes
	(Gaussian signalling)	(Long blocklength)	
Practical SC	Low	Design-dependent	No
	(Finite constellation)	(Adjustable)	

< ロト < 回 > < 回 >

Implementation Details

Implementation for Real-Time Processing

Close-up of USRP Board

- Hardware: USRP 1 (Analog and RF front-end)
 - Programmable Channelization
 - USB 2.0 Interface
- Software: GNU Radio (ver. 10923) & its built-in libraries
 - Open-Source
 - Real-time Signal Processing on a GPP

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Top-level Block Diagram

イロト イヨト イヨト イヨト

Top-level Block Diagram

Single-User OFDM Blocks

Modulator

Demodulator

Frame Structure

- TS1: Packet acquisition, timing and frequency sync. Duration $T_s = 48 \mu s$
- **TS2:** Channel Estimation. Duration $T_{ch} = 72\mu s$

Implementation Details

Experimental Setup

NEAR USER

System Parameters used in Experiments

Center Frequency	903 MHz
System Bandwidth	1 MHz
Payload Size	0.5kBytes (incl. 4-Byte CRC)
Transmission Scheme	16-tone OFDM
Tones	8 data, 4 pilot, 4 null
CP Length	$4\mu s$
Modulation	Near User BPSK, Far User BPSK
Gen. Poly. for Conv. Code	[133, 171]
Code Rates	Near User 1/2, Far User 1/2
Power allocation α	0.8

Data rate: 250kbps

Training overhead: 120 μ s. (< 1% for packet size > 512 bytes)

Experimental Results: PER at Near RX

Packet Size 512 bytes, $\alpha = 0.8$, premable SNR 6 dB above data SNR

Greater far user power assignment \implies Far PER is smaller than Near PER Implementation loss at 1% PER \sim 3 dB

Ganti et al.	Ga	inti	et	al.
--------------	----	------	----	-----

Lessons Learned

Issue	Workaround
Cumbersome feedback loops	Single "master" GNURadio block
Non-ideal USRP TX path	Software pre-compensation
Large clock drift	Fine frequency tracking

(日) (四) (三) (三)

Conclusions and Future Work

Conclusions:

- Designed and implemented a software-based real-time multiuser transmission system using single-user building blocks
- Software limitations of GNURadio platform limit the degree of modularity in the design

Future Work:

- Re-use the Successive Decoding module in other scenarios:
 - Cellular Uplink
 - Interference cancellation
- Circumvent software limitations by implementing all single-user blocks on FPGA