## The TASEP: A Statistical Mechanics Tool to Study the Performance of Wireless Line Networks

#### Sunil Srinivasa and Martin Haenggi

Wireless Institute Department of Electrical Engineering University of Notre Dame

#### Aug 2, 2010

Sunil Srinivasa and Martin Haenggi

University of Notre Dame

ICCCN 2010 1 / 20

#### Multi-hop Wireless Networks

- Due to the stringent energy constraint in nodes and interference, a natural communication strategy is to reduce range of transmission.
- Multi-hop networks are not just meant to carry small volumes of data, but may also be intended for broadband services, e.g. mesh networks.
- However, existing buffering policies have inherent drawbacks: large queueing delays, non-coordinated transmissions, buffer overflows [Fu '03], [Xu '01].
- Consequently, the end-to-end delay and throughput performance in such systems is disappointing.

#### **Prior Work:**

- Queueing-theory based; less tractable [Xie '09], [Bisnik '09].
- Considered small [Ryoki '02] or infinite networks [Gupta '00].
- Neglected queueing delays [Yang '03].
- Assumed all nodes to be backlogged [Abouei '07].

#### **Our Contributions:**

- Propose a revised buffering scheme for multihop networks.
- Draw analogies between the **totally asymmetric simple** exclusion process (TASEP) and wireless line networks.
- Tap into the rich theory of TASEP and its results to
  - Analyze steady state end-to-end delay and throughput.
  - Provide insights into network design.

#### System Model



- All nodes use the same channel.
- Attenuation in the channel: modeled as the product of
  - Large-scale path loss with exponent  $\gamma$ .
  - Small-scale Rayleigh block fading.
- Transmission success events are dictated by the SINR model.

$$p_s = \mathbb{P}(\mathsf{SINR} > \Theta),$$

 $p_s$ : Success probability across each link.  $\Theta$ : SINR threshold.

## A Revised Buffering and Transmission Policy

All the buffering is pushed back to the source, while relay nodes have buffer sizes of unity.

Furthermore, the source node is always backlogged.

- Nodes do not accept incoming packets if their buffer is already full.
  - Simple way to prevent packets from getting too close.
  - Self-organization:
    - Transmitting nodes are at least two hops apart.
    - The exclusion principe regulates the traffic injected in a backpressure-like manner.
- Packets are retransmitted until they are successfully received. (100% network reliability).

#### Advantages of the Single-Buffer Scheme

- Lowers average in-network delay.
  - Stacking-up of packets in buffers is minimal.
- Lessens the variance of the delay.
  - Packet delays are more tightly controlled.
  - Depending on the time a packet spends in its buffer, the source itself can judiciously decide whether to drop it or not.
- Reduces hardware cost and energy consumption.
- Minimizes end-to-end buffer usage [Venkataramanan '10], provides buffering gain [Bhadra '06], self-organizes network operation [Dousse '07].

# Totally Asymmetric Simple Exclusion Process (TASEP) with Open Boundaries

- A topic in statistical mechanics.
- Describes the dynamics of self-driven systems with several interacting particles.
- Applied in problems such as
  - Traffic flow modeling.
  - Kinetics of bipolymerization.
  - Stock market fluctuations.
- A paradigm for non-equilibrium systems.

- The source site is numbered 0 and there are N other sites.
- Configuration of the sites :  $\tau_i[t] \in \{0,1\}$  occupied or not.
- Hopping between sites at time t is possible only if the configuration  $\{\tau_i[t],\tau_{i+1}[t]\}$  is  $\{1,0\}.$



Snapshot of the TASEP system model. Filled circles indicate **occupied sites** and the rest indicate **holes**.

• Exclusion principle creates a **particle-hole duality**.

#### TASEP $\equiv$ Wireless Line Networks?

Note the analogies:

- Sites  $\Leftrightarrow$  Nodes.
- Particles  $\Leftrightarrow$  Packets.
- Exclusion principle  $\Leftrightarrow$  Unit buffer sizes.
- Hopping probability  $\Leftrightarrow$  Link reliability.



The wireless line network is modeled as a source node with a large buffer connected to the TASEP particle flow model.

- Slotted ALOHA: In each time slot, each node having a packet independently transmits with a probability of contention q.
- **Randomized-TDMA (r-TDMA)**: The transmitting node in each time slot is chosen uniformly randomly from the set of all nodes (with probability 1/(N + 1)) instead of being picked in an ordered fashion.
  - CSMA-type scheme (at most one transmitter in each slot).
  - Limiting form of ALOHA ( $q \rightarrow 0$ ).

#### Analysis of the r-TDMA-based Network

- $\bullet \ \mathbb{P}(\tau_i[t]=1):$  occupancy of node i's buffer, in time slot t.
- We are interested in steady state performance  $(t \to \infty)$ .
- $\tau_i :\triangleq \lim_{t \to \infty} \tau_i[t]; \mathbb{P}(\tau_i = 1) = \mathbb{E}\tau_i.$
- For  $0 \leqslant i \leqslant N$ ,

$$\mathbb{E}\tau_{\mathfrak{i}} = \frac{1}{2} + \frac{1}{4} \frac{(2\mathfrak{i})!}{(\mathfrak{i}!)^2} \frac{(N!)^2}{(2N+1)!} \frac{(2N-2\mathfrak{i}+2)!}{[(N-\mathfrak{i}+1)!]^2} (N-2\mathfrak{i}+1).$$



- The occupancies are independent of p<sub>s</sub>!
- Particle-hole symmetry  $(\mathbb{E}\tau_i = 1 \mathbb{E}\tau_{N+1-i}).$

**ICCCN 2010** 

11 / 20

#### Analysis of the r-TDMA-based Network (Contd.)

The throughput at steady state is

$$T = \frac{p_s \mathbb{E} \tau_N}{N+1} = \frac{p_s (N+2)}{2(N+1)(2N+1)}.$$

• T is upper-bounded by  $p_s/4$ .

• T decreases with increasing system size  $(T \sim p_s/(4N))$ . The average end-to-end delay is

$$\mathbb{E}\mathsf{D}_{\mathsf{e}\mathsf{2}\mathsf{e}} = \frac{(2\mathsf{N}^2 + 3\mathsf{N} + 1)}{\mathsf{p}_s}.$$

- Consequence of Little's theorem.
- $\mathbb{E}D_{e2e}$  grows quadratically with N.

#### Short-hop Versus Long-hop Routing

- **Question**: Is it beneficial to route over many short hops or a smaller number of longer hops?
- Suppose that communication occurs across nodes that are m hops apart.
- Delay-minimizing hopping parameter is

$$m_{\text{opt}} = \frac{1}{\ell} \left( \frac{2}{\Theta N_0 \gamma} \right)^{1/\gamma}$$

• Throughput-maximizing hopping parameter is

$$\mathfrak{m}_{opt}' = \frac{1}{\ell} \left( \frac{1}{\Theta N_0 \gamma} \right)^{1/\gamma}$$

## Short-hop Versus Long-hop Routing (Contd.)



ICCCN 2010 14 / 20

#### Analysis of the ALOHA-based Network

- The "effective" hopping probability is  $p = qp_s$ .
- The steady state occupancies are given by

$$\mathbb{E}\tau_{i} = \frac{(1-qp_{s})\sum_{n=0}^{N-i}B(N-n)B(n)+qp_{s}B(N)}{B(N+1)+qp_{s}B(N)},$$

where B(0) = 1, and

$$B(k) = \sum_{j=0}^{k-1} \frac{1}{k} {k \choose j} {k \choose j+1} (1-qp_s)^j, \quad k > 0.$$

• When N 
$$\gg 1$$
,  $\mathbb{E}\tau_1 = (2p - 1 + \sqrt{1-p})/2p$  and  $\mathbb{E}\tau_N = (1 - \sqrt{1-p})/2p$ . Also,  $\mathbb{E}\tau_i \approx 1/2$  for  $1 < i < N$ .

## Analysis of the ALOHA-based Network (Contd.)



Unlike the r-TDMA case,  $\mathbb{E}\tau_i$  critically depends on p.

The steady state throughput is

$$T = qp_s \mathbb{E}\tau_N = \frac{qp_s B(N)}{B(N+1) + qp_s B(N)}.$$

 $\bullet\,$  For  $N\gg$  1, the network throughput at steady state is

$$T \sim \left(1 - \sqrt{1 - qp_s}\right) / 2.$$

- $\bullet\,$  From Little's theorem,  $\mathbb{E} D_{\rm e2e} = (1+N/2)/T.$
- For the special case  $q = p_s = 1$ , every alternate node transmits successfully in each time slot; T = 1/2, and  $\mathbb{E}D_{e2e} = 2$ .

#### Optimizing the Contention Probability

- A long (N  $\gg$  1) ALOHA-based line network.
- Consider the interference-limited regime  $(p_s = \mathbb{P}(SIR > \Theta))$ .
- Question: What value of q minimizes the end-to-end delay?
  - Small q: nodes hold on to packets for long.
  - Large q: interference in the network is high.
- Result: the optimum value of q is  $q_{opt}=min\{1,2/c\}$ , where  $c=\pi\Theta^{1/\gamma}\big/\sqrt{\gamma/2}-1.$
- The same q maximizes the network throughput as well.

## Optimizing the Contention Probability (Contd.)



For small  $\Theta$ , (almost) all nodes having a packet can transmit; interference induces a natural spacing between transmitting nodes.

- Proposed a transmission policy for multihop networks that helps regulate the flow of packets in a completely decentralized manner.
- Used some ideas from TASEP to characterize the steady state end-to-end delay and throughput performances of wireless line networks.
- Obtained results that are scalable with the number of nodes, and thus can provide helpful insights into the design of ad hoc networks.
- Hope that this introductory work instigates interest in solving other relevant wireless networking problems employing ideas from statistical mechanics.