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Multi-hop Wireless Networks

Due to the stringent energy constraint in nodes and interference,
a natural communication strategy is to reduce range of
transmission.

Multi-hop networks are not just meant to carry small volumes of
data, but may also be intended for broadband services, e.g.
mesh networks.

However, existing buffering policies have inherent drawbacks:
large queueing delays, non-coordinated transmissions, buffer
overflows [Fu ’03], [Xu ’01].

Consequently, the end-to-end delay and throughput performance
in such systems is disappointing.
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Prior Work:

Queueing-theory based; less tractable [Xie ’09], [Bisnik ’09].

Considered small [Ryoki ’02] or infinite networks [Gupta ’00].

Neglected queueing delays [Yang ’03].

Assumed all nodes to be backlogged [Abouei ’07].

Our Contributions:

Propose a revised buffering scheme for multihop networks.

Draw analogies between the totally asymmetric simple
exclusion process (TASEP) and wireless line networks.

Tap into the rich theory of TASEP and its results to

Analyze steady state end-to-end delay and throughput.
Provide insights into network design.
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System Model
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All nodes use the same channel.

Attenuation in the channel: modeled as the product of
Large-scale path loss with exponent γ.
Small-scale Rayleigh block fading.

Transmission success events are dictated by the SINR model.

ps = P(SINR > Θ),

ps: Success probability across each link.
Θ: SINR threshold.
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A Revised Buffering and Transmission Policy

1 All the buffering is pushed back to the source, while relay nodes
have buffer sizes of unity.
Furthermore, the source node is always backlogged.

2 Nodes do not accept incoming packets if their buffer is already
full.

Simple way to prevent packets from getting too close.
Self-organization:

Transmitting nodes are at least two hops apart.
The exclusion principe regulates the traffic injected in a
backpressure-like manner.

3 Packets are retransmitted until they are successfully received.
(100% network reliability).

Sunil Srinivasa and Martin Haenggi () University of Notre Dame ICCCN 2010 5 / 20



Advantages of the Single-Buffer Scheme

Lowers average in-network delay.

- Stacking-up of packets in buffers is minimal.

Lessens the variance of the delay.

- Packet delays are more tightly controlled.
- Depending on the time a packet spends in its buffer, the source

itself can judiciously decide whether to drop it or not.

Reduces hardware cost and energy consumption.

Minimizes end-to-end buffer usage [Venkataramanan ’10],
provides buffering gain [Bhadra ’06], self-organizes network
operation [Dousse ’07].
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Totally Asymmetric Simple Exclusion Process

(TASEP) with Open Boundaries

A topic in statistical mechanics.

Describes the dynamics of self-driven systems with several
interacting particles.

Applied in problems such as

Traffic flow modeling.
Kinetics of bipolymerization.
Stock market fluctuations.

A paradigm for non-equilibrium systems.
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TASEP Model

The source site is numbered 0 and there are N other sites.

Configuration of the sites : τi[t] ∈ {0, 1} - occupied or not.

Hopping between sites at time t is possible only if the
configuration {τi[t], τi+1[t]} is {1,0}.

(DEST.)(SOURCE)
N10 2 3 N − 2 N − 1
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Snapshot of the TASEP system model. Filled circles indicate
occupied sites and the rest indicate holes.

Exclusion principle creates a particle-hole duality.
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TASEP ≡ Wireless Line Networks?

Note the analogies:

Sites ⇔ Nodes.

Particles ⇔ Packets.

Exclusion principle ⇔ Unit buffer sizes.

Hopping probability ⇔ Link reliability.

Source
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The wireless line network is modeled as a source node with a large
buffer connected to the TASEP particle flow model.
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MAC Schemes

1 Slotted ALOHA: In each time slot, each node having a packet
independently transmits with a probability of contention q.

2 Randomized-TDMA (r-TDMA): The transmitting node in
each time slot is chosen uniformly randomly from the set of all
nodes (with probability 1/(N + 1)) instead of being picked in an
ordered fashion.

CSMA-type scheme (at most one transmitter in each slot).
Limiting form of ALOHA (q → 0).
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Analysis of the r-TDMA-based Network

P(τi[t] = 1): occupancy of node i’s buffer, in time slot t.
We are interested in steady state performance (t → ∞).
τi :, limt→∞ τi[t]; P(τi = 1) = Eτi.
For 0 6 i 6 N,

Eτi =
1
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The occupancies are
independent of ps!

Particle-hole symmetry
(Eτi = 1 − EτN+1−i).
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Analysis of the r-TDMA-based Network (Contd.)

The throughput at steady state is

T =
psEτN

N + 1
=

ps(N + 2)

2(N + 1)(2N + 1)
.

T is upper-bounded by ps/4.

T decreases with increasing system size (T ∼ ps/(4N)).

The average end-to-end delay is

EDe2e =
(2N2 + 3N + 1)

ps

.

Consequence of Little’s theorem.

EDe2e grows quadratically with N.
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Short-hop Versus Long-hop Routing

Question: Is it beneficial to route over many short hops or a
smaller number of longer hops?

Suppose that communication occurs across nodes that are m

hops apart.

Delay-minimizing hopping parameter is

mopt =
1

ℓ

(

2

ΘN0γ

)1/γ

.

Throughput-maximizing hopping parameter is

m ′

opt =
1

ℓ

(

1

ΘN0γ

)1/γ

.
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Short-hop Versus Long-hop Routing (Contd.)
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Analysis of the ALOHA-based Network

The “effective” hopping probability is p = qps.

The steady state occupancies are given by

Eτi =
(1 − qps)

∑N−i

n=0 B(N − n)B(n) + qpsB(N)

B(N + 1) + qpsB(N)
,

where B(0) = 1, and

B(k) =

k−1∑

j=0

1

k

(

k

j

)(

k

j + 1

)

(1 − qps)
j, k > 0.

When N ≫ 1, Eτ1 =
(

2p − 1 +
√

1 − p
)

/2p and
EτN =

(

1 −
√

1 − p
)

/2p. Also, Eτi ≈ 1/2 for 1 < i < N.
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Analysis of the ALOHA-based Network (Contd.)

1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

i

N = 10

 

 

p = 0.2
p = 0.4
p = 0.6
p = 0.8
p = 1

E
τ

i

Unlike the r-TDMA case, Eτi critically depends on p.
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Analysis of the ALOHA-based Network (Contd.)

The steady state throughput is

T = qpsEτN =
qpsB(N)

B(N + 1) + qpsB(N)
.

For N ≫ 1, the network throughput at steady state is

T ∼
(

1 −
√

1 − qps

)/

2.

From Little’s theorem, EDe2e = (1 + N/2)/T .

For the special case q = ps = 1, every alternate node transmits
successfully in each time slot; T = 1/2, and EDe2e = 2.
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Optimizing the Contention Probability

A long (N ≫ 1) ALOHA-based line network.

Consider the interference-limited regime (ps = P(SIR > Θ)).

Question: What value of q minimizes the end-to-end delay?

Small q: nodes hold on to packets for long.
Large q: interference in the network is high.

Result: the optimum value of q is qopt = min{1, 2/c}, where

c = πΘ1/γ
/
√

γ/2 − 1.

The same q maximizes the network throughput as well.
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Optimizing the Contention Probability (Contd.)
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Empirical
Analytical
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For small Θ, (almost) all nodes having a packet can transmit;
interference induces a natural spacing between transmitting nodes.

Sunil Srinivasa and Martin Haenggi () University of Notre Dame ICCCN 2010 19 / 20



Summary

Proposed a transmission policy for multihop networks that helps
regulate the flow of packets in a completely decentralized
manner.

Used some ideas from TASEP to characterize the steady state
end-to-end delay and throughput performances of wireless line
networks.

Obtained results that are scalable with the number of nodes, and
thus can provide helpful insights into the design of ad hoc
networks.

Hope that this introductory work instigates interest in solving
other relevant wireless networking problems employing ideas
from statistical mechanics.
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