CREST: An Opportunistic Forwarding Protocol Based on Conditional Residual Time

Sunil Srinivasa ${ }^{1}$ Sudha Krishnamurthy ${ }^{2}$
${ }^{1}$ Department of Electrical Engineering
University of Notre Dame, IN
${ }^{2}$ Deutsche Telekom Laboratories
Berlin, Germany

IEEE SECON 2009

Outline

(1) Introduction
(2) Background
(3) Dataset collection

4 Dataset characterization

- Aggregate inter-contact duration
- Pairwise inter-contact durations
(5) CREST protocol

6 Performance evaluation

- Office dataset
- Conference dataset

Introduction

- Intermittently connected environments (ICE)
- A fully connected path between source and sink may not always exist
- Contact schedules of nodes not known in advance
- E.g. ad-hoc environments without permanent networking infrastructure
- Opportunistic forwarding protocols
- Leverage forwarding opportunities created by intermediate nodes
- Portable, wireless communication devices embedded in mobile entities (e.g. humans, vehicles)
- Nodes follow store and forward paradigm
- Tolerant to delays and disruptions
- Challenge: Choosing the best forwarding opportunity based on limited contact information

Related Work

- Focus: Analytical characterization of mobility traces
- Aggregate inter-contact durations (ICD) between human pairs follows power-law distribution[Chaintreau]
- ICD is dichotomous: power-law followed by exponential decay[Karagiannis][Cai]

Related Work

- Focus: Analytical characterization of mobility traces
- Aggregate inter-contact durations (ICD) between human pairs follows power-law distribution[Chaintreau]
- ICD is dichotomous: power-law followed by exponential decay[Karagiannis][Cai]
- Focus: Design of protocols based on different forwarding metrics Flooding, Direct hop: no forwarding metric MED: complete future contact schedules, mean expected delay MEED: mean expected delay
PROPHET: delivery probability
SimBet,Bubblerap: social structure of the network

Related Work

- Focus: Analytical characterization of mobility traces
- Aggregate inter-contact durations (ICD) between human pairs follows power-law distribution[Chaintreau]
- ICD is dichotomous: power-law followed by exponential decay[Karagiannis][Cai]
- Focus: Design of protocols based on different forwarding metrics

Flooding, Direct hop: no forwarding metric
MED: complete future contact schedules, mean expected delay
MEED: mean expected delay
PROPHET: delivery probability
SimBet,Bubblerap: social structure of the network

- CREST
- Forwarding metric based on characterization of mobility traces
- Metric based on conditional residual time

Collection of Mobility Traces

- Environment profile
- Open research lab environment
- Mobile workspaces, meetings rooms, cafeteria
- 4 floors
- Participant profile
- 52 participants, each carrying Ekahau wireless tag
- Researchers from 2 research groups, student interns
- Project leaders in business divisions, department managers
- System administrators, administrative staff
- Data Logging
- Location coordinates: X, Y, floor
- Timestamp, tag ID, signal quality
- 30-day traces, 5 second interval
- Pairs within 5 meters on same floor are considered to be in contact

Dataset Characterization

- Approach
- Analyze the aggregate ICD of the office dataset
- Derive bounds for the delay performance of DTN protocols
- Model the pairwise ICD and propose a new link metric
- Assume data transfer time negligible compared to wait time until next contact

ICD

Time elapsed between two successive contacts of a pair of nodes.

Residual time:

Time remaining until next contact between nodes i and j.

Aggregate Inter-Contact Duration

- CCDF of aggregate ICD for office dataset is dichotomous
- Pareto ($\alpha=0.1497$) followed by exponential tail $\left(\lambda=7.87 * 10^{-6}\right)$
- Characteristic time $=3$ hours

Delay Bounds

Direct hop protocol

- Single hop transmission to destination directly from source
- Mean end-to-end delay for office dataset 35 hours
- Provides upper delay bound for DTN protocols

Delay Bounds

Direct hop protocol

- Single hop transmission to destination directly from source
- Mean end-to-end delay for office dataset 35 hours
- Provides upper delay bound for DTN protocols

Flooding protocol

- Forward copy of message to every node in contact that does not already have a copy
- Mean end-to-end delay for office dataset 4.66 hours
- Provides lower delay bound for DTN protocols

Delay expression for pareto and exponential cases for both protocols derived in paper

Pairwise Inter-Contact Durations

- Aggregate ICD does not accurately represent contact behavior of different node pairs

- Pairwise ICD provides better basis for link metric
- Most pairwise ICD in office dataset lognormally distributed (K-S statistic)
- Different parameters $\mu_{i j}$ and $\sigma_{i j}$
- Means span over three orders of magnitude
- Contact behavior between individual pairs not memoryless

CREST Link Metric

Conditional Residual Time (CRT)

Time remaining before node i and j meet, conditioned on the information that they last met t_{ij} time slots ago.

CREST Link Metric

Conditional Residual Time (CRT)

Time remaining before node i and j meet, conditioned on the information that they last met t_{ij} time slots ago.

- CREST uses median CRT as link metric
- Computed as $\tilde{\mathrm{t}}_{\mathrm{ij}}=\overline{\mathrm{F}}_{\hat{\mathrm{R}}_{(\mathrm{i}, \mathrm{j})}^{-1}}(0.5)$

$$
\overline{\mathrm{F}}_{\hat{\mathrm{R}}_{(\mathrm{i}, \mathrm{j})}}(\mathrm{t})=\operatorname{Pr}\left(\hat{\mathrm{R}}_{(\mathrm{i}, \mathrm{j})}>\mathrm{t} \mid \mathrm{T}_{(\mathrm{i}, \mathrm{j})}>\mathrm{t}_{\mathrm{ij}}\right)
$$

$R(i, j): r . v$ denoting the CRT between pair (i, j)
$T(i, j)$: ICD of pair (i, j)

CREST Link Metric

Conditional Residual Time (CRT)

Time remaining before node i and j meet, conditioned on the information that they last met t_{ij} time slots ago.

- CREST uses median CRT as link metric
- Computed as $\tilde{\mathrm{t}}_{i j}=\overline{\mathrm{F}}_{\hat{\mathrm{R}}_{(\mathrm{i}, \mathrm{j})}^{-1}}$ (0.5)

$$
\overline{\mathrm{F}}_{\hat{\mathrm{R}}_{(\mathrm{i}, \mathrm{j})}}(\mathrm{t})=\operatorname{Pr}\left(\hat{\mathrm{R}}_{(\mathrm{i}, \mathrm{j})}>\mathrm{t} \mid \mathrm{T}_{(\mathrm{i}, \mathrm{j})}>\mathrm{t}_{\mathrm{ij}}\right)
$$

$R(i, j): r . v$ denoting the CRT between pair (i, j)
$T(i, j)$: ICD of pair (i, j)

For lognormal pairwise ICD ($T(i, j)$):

$$
\begin{equation*}
\tilde{\mathrm{t}}_{\mathrm{ij}}=\exp \left(\operatorname{erf}^{-1}\left(\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{\ln \mathrm{t}_{\mathrm{ij}}-\mu_{i j}}{\sigma_{i j} \sqrt{2}}\right)\right) \sigma_{i j} \sqrt{2}+\mu_{i j}\right)-\mathrm{t}_{\mathrm{ij}} . \tag{1}
\end{equation*}
$$

Median CRT

- Lognormal parameters for office dataset:
- $8.0 \leqslant \mu_{i j} \leqslant 11.0$
- $2.5 \leqslant \sigma_{i j} \leqslant 3.5$

- Behavior of median CRT depends on distribution of ICD
Lognormal (not memoryless):
monotonically increases
with time elapsed since last contact (t_{ij})
Exponential (memoryless): residual time independent of $t_{i j}$
Constant: decreases with $t_{i j}$

CREST Forwarding Protocol

> EncNodes = nodes currently in contact with FwdNode; PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do Compute median CRT $\tilde{\mathrm{t}}_{i D}$; end
> NextHopNode $=$ node $\mathrm{k} \in$
> PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{kD}}$;
> if NextHopNode \neq FwdNode then
> Forward message to
> NextHopNode;
> FwdNode = NextHopNode;
> end

CREST Forwarding Protocol

A

EncNodes = nodes currently in contact with FwdNode;
PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do

Compute median CRT $\tilde{\mathrm{t}}_{\mathrm{iD}}$;
end
NextHopNode $=$ node $k \in$
PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{kD}}$;
if NextHopNode \neq FwdNode then
Forward message to
NextHooNode:

CREST Forwarding Protocol

A

EncNodes = nodes currently in contact with FwdNode;
PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do

Compute median CRT $\tilde{\mathrm{t}}_{\mathrm{iD}}$;
end
NextHopNode $=$ node $k \in$
PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{kD}}$;
if NextHopNode \neq FwdNode then
Forward message to
NextHodNode:

CREST Forwarding Protocol

> EncNodes = nodes currently in contact with FwdNode; PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do Compute median CRT $\tilde{\mathrm{t}}_{i D}$; end
> NextHopNode $=$ node $\mathrm{k} \in$
> PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{k} D}$;
> if NextHopNode \neq FwdNode then
> Forward message to
> NextHopNode;
> FwdNode = NextHopNode;
> end

CREST Forwarding Protocol

CREST Forwarding Protocol

> EncNodes = nodes currently in contact with FwdNode; PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do Compute median CRT $\tilde{\mathrm{t}}_{i D}$; end
> NextHopNode $=$ node $\mathrm{k} \in$
> PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{k} D}$;
> if NextHopNode \neq FwdNode then
> Forward message to
> NextHopNode;
> FwdNode = NextHopNode;
> end

CREST Forwarding Protocol

EncNodes = nodes currently in contact with FwdNode;
PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do

Compute median CRT $\tilde{\mathrm{t}}_{\mathrm{iD}}$;
end
NextHopNode $=$ node $k \in$
PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{kD}}$;
if NextHopNode \neq FwdNode then
Forward message to
NextHodNode:

CREST Forwarding Protocol

EncNodes = nodes currently in contact with FwdNode;
PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do

Compute median CRT $\tilde{\mathrm{t}}_{\mathrm{iD}}$;
end
NextHopNode $=$ node $k \in$
PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{kD}}$;
if NextHopNode \neq FwdNode then
Forward message to
NextHooNode:

CREST Forwarding Protocol

EncNodes = nodes currently in contact with FwdNode;
PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do Compute median CRT $\tilde{\mathrm{t}}_{\mathrm{iD}}$; end
NextHopNode $=$ node $k \in$
PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{kD}}$;
if NextHopNode \neq FwdNode then
Forward message to
NextHooNode:

CREST Forwarding Protocol

CREST Forwarding Protocol

EncNodes = nodes currently in contact with FwdNode; PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do Compute median CRT $\tilde{\mathrm{t}}_{i D}$;
end
NextHopNode $=$ node $k \in$

CREST Forwarding Protocol

EncNodes $=$ nodes currently in contact with FwdNode;
PossRelays $=$ EncNodes \cup FwdNode; foreach node i in PossRelays do Compute median CRT $\tilde{\mathrm{t}}_{\mathrm{iD}}$; end
NextHopNode $=$ node $k \in$
PossRelays with minimum $\tilde{\mathrm{t}}_{\mathrm{kD}}$;
if NextHopNode \neq FwdNode then
Forward message to
NextHooNode:

Office Dataset: Single Copy

Office Dataset: Single Copy

- DR within 1 day: Flooding (100% in 21 hours), CREST (80%), PROPHET (60\%), MEED (36\%), MED (34\%)
- CREST more adaptive to ICD behavior compared to PROPHET

Office Dataset: Multiple Copies

Figure: Can CREST perform as well as Flooding but with fewer message copies?

- Source generates m copies
- Delivery ratio improves with m

$$
\begin{aligned}
& 90 \% \text { DR: } 40 \mathrm{hrs}(m=1) \\
& 24 \mathrm{hrs}(m=2) \\
& 18 \mathrm{hrs}(m=5)
\end{aligned}
$$

- Performance stable beyond $m>5$
- CREST has low overhead
- CREST: 95% delivery in 21 hrs with $\mathrm{m}=5$
- Flooding: 100% in 21 hrs with 196 transmissions

Haggle Dataset: Single Copy

Haggle Dataset: Single Copy

Inferences

- Contact data logged by iMotes
- 41 conference participants, 4-day period
- ICD is lognormal
- CREST has lower delay, higher delivery ratio compared to MED, PROPHET

Conclusions

- Data characterization
- Mobility traces from real environments show human contact behavior not memoryless
- Median CRT: a novel link metric for opportunistic forwarding

Conclusions

- Data characterization
- Mobility traces from real environments show human contact behavior not memoryless
- Median CRT: a novel link metric for opportunistic forwarding
- CREST protocol
- Decentralized decision making based on local contact information
- More effective in different ICEs
- Low overhead
- Performs better than protocols that use future contact schedules and global contact information

Conclusions

- Data characterization
- Mobility traces from real environments show human contact behavior not memoryless
- Median CRT: a novel link metric for opportunistic forwarding
- CREST protocol
- Decentralized decision making based on local contact information
- More effective in different ICEs
- Low overhead
- Performs better than protocols that use future contact schedules and global contact information
- Future work
- Mobility-based metrics capture transient contact behavior
- Combine with metrics that capture social structure

