CREST: An Opportunistic Forwarding Protocol Based on Conditional Residual Time

Sunil Srinivasa¹ Sudha Krishnamurthy²

¹Department of Electrical Engineering University of Notre Dame, IN

²Deutsche Telekom Laboratories Berlin, Germany

IEEE SECON 2009

CREST

Outline

1 Introduction

2 Background

3 Dataset collection

Dataset characterization

• Aggregate inter-contact duration

CREST

• Pairwise inter-contact durations

5 CREST protocol

6 Performance evaluation

Office dataset

()

Conference dataset

Introduction

Introduction

- Intermittently connected environments (ICE)
 - A fully connected path between source and sink may not always exist
 - Contact schedules of nodes not known in advance
 - E.g. ad-hoc environments without permanent networking infrastructure
- Opportunistic forwarding protocols
 - Leverage forwarding opportunities created by intermediate nodes
 - Portable, wireless communication devices embedded in mobile entities (e.g. humans, vehicles)
 - Nodes follow store and forward paradigm
 - Tolerant to delays and disruptions
 - Challenge: Choosing the best forwarding opportunity based on limited contact information

CREST

Background

Related Work

- Focus: Analytical characterization of mobility traces
 - Aggregate inter-contact durations (ICD) between human pairs follows power-law distribution[Chaintreau]
 - ICD is dichotomous: power-law followed by exponential decay[Karagiannis][Cai]

CREST

Background

Related Work

- Focus: Analytical characterization of mobility traces
 - Aggregate inter-contact durations (ICD) between human pairs follows power-law distribution[Chaintreau]
 - ICD is dichotomous: power-law followed by exponential decay[Karagiannis][Cai]

Focus: Design of protocols based on different forwarding metrics
 Flooding, Direct hop: no forwarding metric
 MED: complete future contact schedules, mean expected delay
 MEED: mean expected delay
 PROPHET: delivery probability
 SimBet,Bubblerap: social structure of the network

CREST

Background

Related Work

- Focus: Analytical characterization of mobility traces
 - Aggregate inter-contact durations (ICD) between human pairs follows power-law distribution[Chaintreau]
 - ICD is dichotomous: power-law followed by exponential decay[Karagiannis][Cai]
- Focus: Design of protocols based on different forwarding metrics
 Flooding, Direct hop: no forwarding metric
 MED: complete future contact schedules, mean expected delay
 MEED: mean expected delay

 PROPHET: delivery probability
 SimBet,Bubblerap: social structure of the network
 CREST
 - Forwarding metric based on characterization of mobility traces
 - Metric based on conditional residual time

🗇 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Dataset collection

Collection of Mobility Traces

• Environment profile

- Open research lab environment
- Mobile workspaces, meetings rooms, cafeteria
- 4 floors

Participant profile

- 52 participants, each carrying Ekahau wireless tag
- Researchers from 2 research groups, student interns
- Project leaders in business divisions, department managers
- System administrators, administrative staff

Data Logging

()

- Location coordinates: X, Y, floor
- Timestamp, tag ID, signal quality
- 30-day traces, 5 second interval
- Pairs within 5 meters on same floor are considered to be in contact

CREST

Dataset characterization

Dataset Characterization

- Approach
 - Analyze the aggregate ICD of the office dataset
 - Derive bounds for the delay performance of DTN protocols
 - Model the pairwise ICD and propose a new link metric
 - Assume data transfer time negligible compared to wait time until next contact

ICD

Time elapsed between two successive contacts of a pair of nodes.

CREST

Residual time:

Time remaining until next contact between nodes i and j.

CREST

Aggregate Inter-Contact Duration

- CCDF of aggregate ICD for office dataset is dichotomous
- Pareto ($\alpha = 0.1497$) followed by exponential tail ($\lambda = 7.87 * 10^{-6}$)
- Characteristic time = 3 hours

0

Delay Bounds

Direct hop protocol

• Single hop transmission to destination directly from source

CREST

- Mean end-to-end delay for office dataset 35 hours
 - Provides upper delay bound for DTN protocols

Delay Bounds

Direct hop protocol

- Single hop transmission to destination directly from source
- Mean end-to-end delay for office dataset 35 hours
 - Provides upper delay bound for DTN protocols

Flooding protocol

- Forward copy of message to every node in contact that does not already have a copy
- Mean end-to-end delay for office dataset 4.66 hours
 - Provides lower delay bound for DTN protocols

Delay expression for pareto and exponential cases for both protocols derived in paper

→ 3 → 4 3

CREST

Pairwise Inter-Contact Durations

()

- Aggregate ICD does not accurately represent contact behavior of different node pairs
- Pairwise ICD provides better basis for link metric
- Most pairwise ICD in office dataset lognormally distributed (K-S statistic)
 - Different parameters μ_{ij} and σ_{ij}
 - Means span over three orders of magnitude
 - Contact behavior between individual pairs not memoryless

CREST Link Metric

Conditional Residual Time (CRT)

Time remaining before node i and j meet, conditioned on the information that they last met t_{ij} time slots ago.

CREST Link Metric

Conditional Residual Time (CRT)

Time remaining before node i and j meet, conditioned on the information that they last met t_{ij} time slots ago.

- CREST uses median CRT as link metric
- \bullet Computed as $\tilde{t}_{ij}=\bar{F}_{\hat{R}_{(i,j)}}^{-1}(0.5)$

$$\overline{F}_{\hat{R}_{(\mathfrak{i}, j)}}(t) = Pr\left(\hat{R}_{(\mathfrak{i}, j)} > t \mid T_{(\mathfrak{i}, j)} > t_{\mathfrak{i} \mathfrak{j}}\right)$$

CREST

 $\begin{array}{l} R(i,j){:}\ r.v. \ denoting \ the \ CRT \ between \ pair \ (i,j) \\ T(i,j){:}\ ICD \ of \ pair \ (i,j) \end{array}$

CREST Link Metric

Conditional Residual Time (CRT)

Time remaining before node i and j meet, conditioned on the information that they last met t_{ij} time slots ago.

- CREST uses median CRT as link metric
- Computed as $\tilde{t}_{ij} = \bar{F}^{-1}_{\hat{R}_{(i,j)}}(0.5)$

$$\bar{F}_{\hat{R}_{(i,j)}}(t) = Pr\left(\hat{R}_{(i,j)} > t \mid T_{(i,j)} > t_{ij}\right)$$

 $R(i,j){:}$ r.v. denoting the CRT between pair (i,j) $T(i,j){:}$ ICD of pair (i,j)

For lognormal pairwise ICD (T(i, j)):

$$\tilde{t}_{ij} = \exp\left(\text{erf}^{-1}\left(\frac{1}{2} + \frac{1}{2}\text{erf}\left(\frac{\ln t_{ij} - \mu_{ij}}{\sigma_{ij}\sqrt{2}}\right)\right)\sigma_{ij}\sqrt{2} + \mu_{ij}\right) - t_{ij}.$$
 (1)

CREST

Median CRT

()

• Lognormal parameters for office dataset:

• 8.0
$$\leqslant \mu_{ij} \leqslant 11.0$$
 • 2.5 $\leqslant \sigma_{ij} \leqslant 3.5$

 Behavior of median CRT depends on distribution of ICD

Lognormal (not memoryless):

 $\label{eq:constant} \begin{array}{l} \mbox{monotonically increases} \\ \mbox{with time elapsed since} \\ \mbox{last contact} \ (t_{ij}) \\ \mbox{Exponential} \ (\mbox{memoryless}): \ \mbox{residual} \end{array}$

time independent of t_{ij}

Constant: decreases with t_{ij}

CREST Forwarding Protocol

S

()

EncNodes = nodes currently in contact with FwdNode; $PossRelays = EncNodes \cup FwdNode;$ foreach node i in PossRelays do Compute median CRT \tilde{t}_{iD} : end *NextHopNode* = node $k \in$ *PossRelays* with minimum \tilde{t}_{kD} ; if NextHopNode \neq FwdNode then Forward message to NextHopNode; FwdNode = NextHopNode;end

CREST Forwarding Protocol

S B

()

EncNodes = nodes currently in contact with FwdNode; $PossRelays = EncNodes \cup FwdNode;$ foreach node i in PossRelays do Compute median CRT \tilde{t}_{iD} : end *NextHopNode* = node $k \in$ *PossRelays* with minimum \tilde{t}_{kD} ; **if** NextHopNode \neq FwdNode **then** Forward message to NextHopNode: CREST **SECON 2009** 12 / 16

CREST Forwarding Protocol

()

EncNodes = nodes currently in contact with FwdNode; $PossRelays = EncNodes \cup FwdNode;$ foreach node i in PossRelays do Compute median CRT \tilde{t}_{iD} : end *NextHopNode* = node $k \in$ *PossRelays* with minimum \tilde{t}_{kD} ; **if** NextHopNode \neq FwdNode **then** Forward message to NextHopNode:

CREST Forwarding Protocol

EncNodes = nodes currently in contact with FwdNode; $PossRelays = EncNodes \cup FwdNode;$ foreach node i in PossRelays do Compute median CRT \tilde{t}_{iD} : end *NextHopNode* = node $k \in$ *PossRelays* with minimum \tilde{t}_{kD} ; if NextHopNode \neq FwdNode then Forward message to NextHopNode; FwdNode = NextHopNode;end

CREST Forwarding Protocol

()

CREST Forwarding Protocol

EncNodes = nodes currently in contact with FwdNode; $PossRelays = EncNodes \cup FwdNode;$ foreach node i in PossRelays do Compute median CRT \tilde{t}_{iD} : end *NextHopNode* = node $k \in$ *PossRelays* with minimum \tilde{t}_{kD} ; if NextHopNode \neq FwdNode then Forward message to NextHopNode; FwdNode = NextHopNode;end

CREST Forwarding Protocol

CREST Forwarding Protocol

()

EncNodes = nodes currently in contact with FwdNode; $PossRelays = EncNodes \cup FwdNode;$ foreach node i in PossRelays do Compute median CRT \tilde{t}_{iD} : end *NextHopNode* = node $k \in$ *PossRelays* with minimum \tilde{t}_{kD} ; **if** NextHopNode \neq FwdNode **then** Forward message to NextHopNode: **SECON 2009** 12 / 16

CREST Forwarding Protocol

В

()

EncNodes = nodes currently in contact with FwdNode; $PossRelays = EncNodes \cup FwdNode;$ foreach node i in PossRelays do Compute median CRT \tilde{t}_{iD} : end *NextHopNode* = node $k \in$ *PossRelays* with minimum \tilde{t}_{kD} ; **if** NextHopNode \neq FwdNode **then** Forward message to NextHopNode: **SECON 2009** 12 / 16

CREST Forwarding Protocol

EncNodes = nodes currently incontact with FwdNode; $PossRelays = EncNodes <math>\cup$ FwdNode; foreach node *i* in PossRelays do Compute median CRT \tilde{t}_{iD} ; end NextHopNode = node $k \in$ CREST SECON 2009 12 / 16

()

CREST Forwarding Protocol

EncNodes = nodes currently incontact with FwdNode; $PossRelays = EncNodes <math>\cup$ FwdNode; foreach node *i* in PossRelays do Compute median CRT \tilde{t}_{iD} ; end NextHopNode = node $k \in$ CREST SECON 2009 12 / 16

CREST Forwarding Protocol

 $G \rightarrow D$ $S \rightarrow B$

()

EncNodes = nodes currently in contact with FwdNode; $PossRelays = EncNodes \cup FwdNode;$ foreach node i in PossRelays do Compute median CRT \tilde{t}_{iD} : end *NextHopNode* = node $k \in$ *PossRelays* with minimum \tilde{t}_{kD} ; **if** NextHopNode \neq FwdNode **then** Forward message to NextHopNode:

CREST

Office Dataset: Single Copy

()

<ロ> <同> <同> < 回> < 回>

Office Dataset: Single Copy

()

DR within 1 day: Flooding (100% in 21 hours), CREST (80%), PROPHET (60%), MEED (36%), MED (34%)

CREST

• CREST more adaptive to ICD behavior compared to PROPHET

・ロト ・同ト ・ヨト ・ヨト

CREST

Office Dataset: Multiple Copies

Figure: Can CREST perform as well as Flooding but with fewer message copies?

()

- Source generates m copies
- Delivery ratio improves with m 90% DR: 40 hrs (m = 1) 24 hrs (m = 2) 18 hrs (m = 5)
- Performance stable beyond m > 5
- CREST has low overhead
 - CREST: 95% delivery in 21 hrs with m = 5
 - Flooding: 100% in 21 hrs with 196 transmissions

Performance evaluation Conference dataset

CREST

Haggle Dataset: Single Copy

SECON 2009 15 / 16

э

э

・ロン ・回 と ・ ヨン・

()

CREST

Haggle Dataset: Single Copy

()

Inferences

- Contact data logged by iMotes
- 41 conference participants, 4-day period
- ICD is lognormal
- CREST has lower delay, higher delivery ratio compared to MED, PROPHET

Conclusions

- Data characterization
 - Mobility traces from real environments show human contact behavior not memoryless
 - Median CRT: a novel link metric for opportunistic forwarding

Conclusions

Data characterization

- Mobility traces from real environments show human contact behavior not memoryless
- Median CRT: a novel link metric for opportunistic forwarding

CREST protocol

• Decentralized decision making based on local contact information

CREST

- More effective in different ICEs
 - Low overhead
 - Performs better than protocols that use future contact schedules and global contact information

Conclusions

Data characterization

- Mobility traces from real environments show human contact behavior not memoryless
- Median CRT: a novel link metric for opportunistic forwarding

CREST protocol

- Decentralized decision making based on local contact information
- More effective in different ICEs
 - Low overhead
 - Performs better than protocols that use future contact schedules and global contact information
- Future work
 - Mobility-based metrics capture transient contact behavior
 - Combine with metrics that capture social structure