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Motivation

Large-scale path loss law: S ∝ d−γ.

Though it is typically assumed that the path loss exponent
(PLE) is known a priori, it is often not the case.

The PLE has a strong impact on the quality of links, and thus
needs to be accurately estimated.
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Motivation (contd.)

Example 1: The information-theoretic capacity of large random
ad hoc networks scales as ∗

n2−γ/2 for 2 6 γ < 3
√

n for γ > 3.

Depending on the value of γ, different routing strategies are
required to be implemented.

∗A. Özgür, O. Lévêque and D. Tse, “Hierarchical Cooperation Achieves
Optimal Capacity Scaling in Ad Hoc Networks,” IEEE Trans. Info. Th., 2007.
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Motivation (contd.)

Example 2: Outage probability in a planar Poisson point
process with Rayleigh fading.
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The system performance critically depends on γ.
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System Model

Receiver

Transmitter

Filled circles: transmitters.
Empty circles: receivers.

Poisson point process (PPP)
on R

2 with density λ.

Channel access scheme is
ALOHA.

p is the ALOHA contention
parameter.

No synchronization.
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System Model (contd.)

Attenuation in the channel: product of

large-scale path loss, with PLE γ.
small-scale fading (m-Nakagami).
m = 1: Rayleigh fading ; m → ∞: no fading.

Noise is AWGN with variance N0.

All the transmit powers are equal to unity (no power control).

Problem: How do you accurately estimate the PLE at each node in
the network in a completely distributed manner?

Sunil Srinivasa and Martin Haenggi () University of Notre Dame IT School 2009 6 / 19



What Makes Estimating the PLE Complicated?

Large-scale loss: deterministic; small-scale fading: stochastic.

This distinction does not hold in random networks, thus need to
consider the distance and fading ambiguities jointly.

During the network initialization phase of the network, the
system is typically interference-limited.

Purely RSS-based estimators cannot be used in these situations.
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Overview

Propose three distributed algorithms for estimating the PLE in
large random wireless networks that explicitly take into account

the uncertainty in the locations of the nodes.
the uncertainty in the fading gains across links.
the interference in the network.

Provide simulation results to demonstrate the performance of
the algorithms and quantify the estimation errors.

Metric: ’relative’ MSE: E

[

(γ̂ − γ)
2
]

/γ.
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Algo. 1: Using the Mean Interference

This algorithm assumes that the network density λ is known.

In theory, the mean interference is

µ = 2πλpA
2−γ
0 / (γ − 2) ,

where A0 is the near-field radius of the antenna.

Implementation

Nodes simply need to record the mean strength of the received
power, µ ′, averaged over several time slots.

Equating µ to µ ′, and using the known values of p, A0, and λ,
γ̂ is found from a look-up table.
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Algo. 1: Using the Mean Interference (contd.)

Relative MSE of γ̂ versus the number of time slots.
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The estimates are fairly accurate over a wide range of parameters.
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Algo 2: Based on (Virtual) Outage Probabilities

This algorithm does not require the knowledge of λ or m.

In a Poisson network, the outage probability is

Pr(O) = P(SIR 6 Θ) = 1 − exp(−cΘ2/γ),

where c = λpπΓ
(

m + 2
γ

)

Γ
(

1 − 2
γ

)/

(

Γ(m)m2/γ
)

.

Nodes can determine the SIR (and consequently, the outage
probability) by considering a ’virtual’ transmitter.
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Algo 2: Based on (Virtual) Outage Prob. (contd.)

Implementation: A ’differential’ method.

Obtain a histogram of the observed SIR values measured over
several time slots.

The empirical success probabilities (ps,i = P(SIR > Θi),
i = 1, 2) are obtained at two different threshold values.

An estimate of γ is obtained as

γ̂ =
2 ln(Θ1/Θ2)

ln (ln ps,1/ lnps,2)
.
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Algo 2: Based on (Virtual) Outage Prob. (contd.)

Relative MSE of γ̂ versus the number of time slots.
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The estimation error increases with larger γ.
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Algo 2: Based on (Virtual) Outage Prob. (contd.)

Relative MSE of γ̂ versus the Nakagami parameter.
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This algorithm performs more accurately at lower values of m.
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Algo 3: Based on the Cardinality of the Tx Set

This algorithm also does not require to know m or λ.

Transmitter node y is in receiver node x’s transmitting set, T(x)

if they are connected, i.e., the SIR at x due to y’s signal is > Θ.

For m ∈ N,

E|T(x)| = N̄T =
Γ(m)

(

1 −
(

2
γ

)m)

Γ(m + 2
γ
)Γ(2 − 2

γ
)Θ2/γ

.
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Algo 3: Based on the Card. of the Tx Set (contd.)

Implementation

For a known threshold Θ1 > 1, at time slot i, 1 6 i 6 N, set

NT ,1(i) =

{
1 if the node can decode a packet
0 otherwise.

Evaluate N̄T ,1 and N̄T ,2 at two different threshold values Θ1 and
Θ2 respectively.

We obtain

γ̂ = (2 ln(Θ2/Θ1)) / ln(N̄T ,1/N̄T ,2).
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Algo 3: Based on the Card. of the Tx Set (contd.)

Relative MSE of γ̂ versus the number of time slots.
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In contrast to Algo. 1 and 2, the relative MSE decreases with γ.
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Algo 3: Based on the Card. of the Tx Set (contd.)

Relative MSE of γ̂ versus the Nakagami parameter.
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The estimates are more accurate at lower m.
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Summary

We have addressed the PLE estimation problem in the presence
of node location uncertainties, m-Nakagami fading and most
importantly, interference!

Each of the algorithms are fully distributed and do not require
any information on the location of other nodes or the value of m.

We remark that the bias (and the MSE) can be significantly
lowered if nodes have access to several independent realizations
of the point process or if they are allowed to communicate.
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