Combining Stochastic Geometry and Statistical Mechanics for the Analysis and Design of MANETs

Sunil Srinivasa and Martin Haenggi

IT MANET PI Meeting, Boston, Sep 14-15 2009.

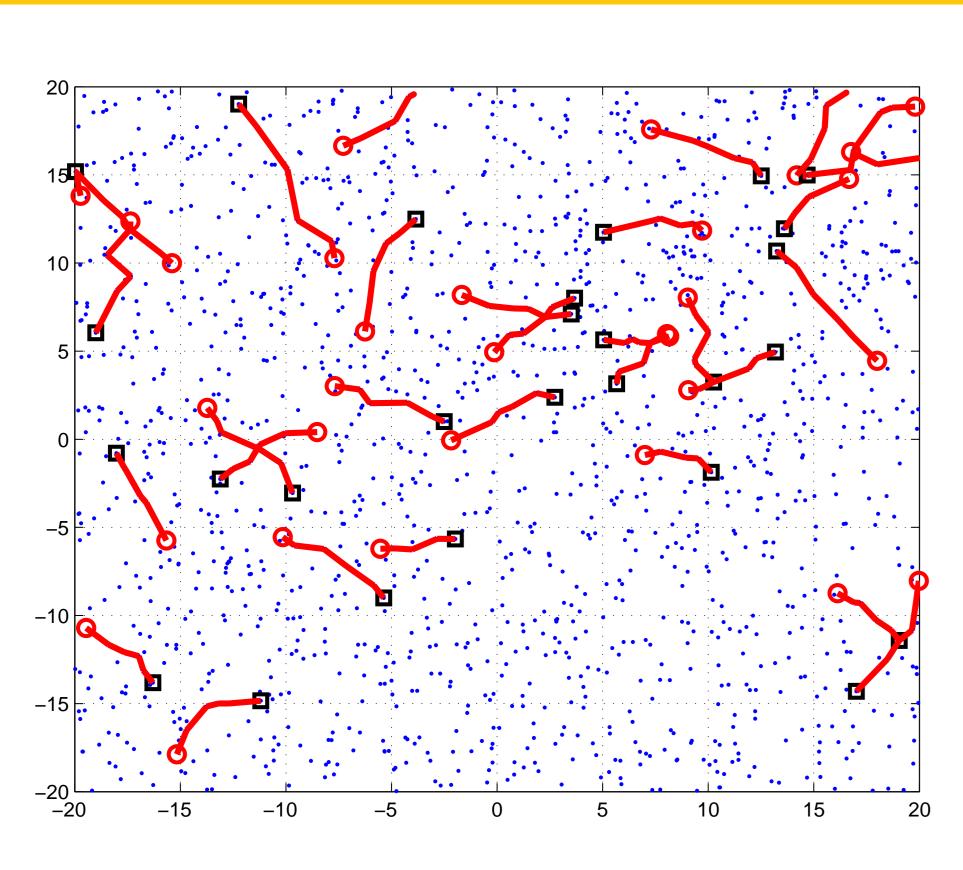
UNIVERSITY OF NOTRE DAME

OVERVIEW

- ► Employ a combination of tools from two paradigms, **stochastic geometry** and **TASEP** (Totally Asymmetric Simple Exclusion Process) to analyze multihop wireless ad hoc networks.
- ▶ Provide valuable insights from a system design stand-point.

Prior work: single-hop analysis, backlogged nodes, simplified models.

SYSTEM MODEL



Sources \sim PPP (λ_s) (= $\delta\lambda$) Potential relays \sim PPP (λ_r) (= $(1 - \delta)\lambda$). Channel: Rayleigh i.i.d., path loss exponent γ .

Routing Strategy:

In each flow, the next-hop node is the n^{th} -nearest-neighbor that lies within $\pm \phi/2$ of the axis to the destination.

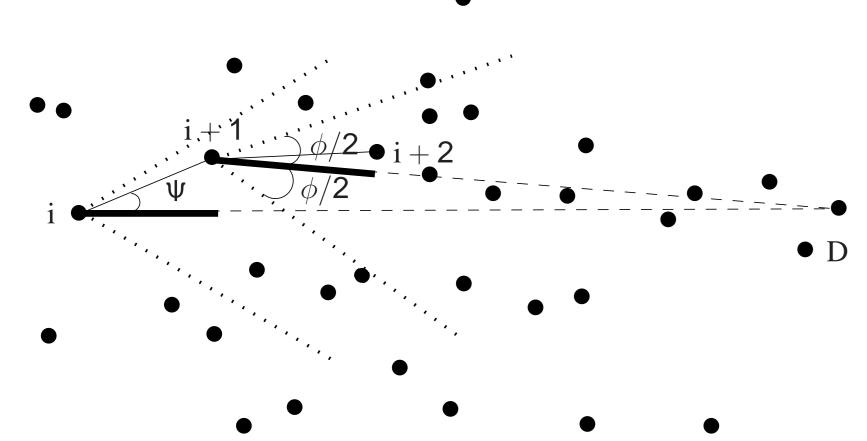


Illustration of nearest-neighbor (n = 1) routing.

MAC Schemes:

- ► Randomized TDMA (r-TDMA): The transmitting node in each time slot is chosen uniformly randomly from the set of all nodes in the flow *having a packet*.
- ► ALOHA with contention probability q.

Performance Metric:

Transport Density is the average number of bit-meters successfully delivered per second per unit surface area: $\rho_{\text{trans}} = \delta T D$, where

T is the throughput of a 'typical' flow.

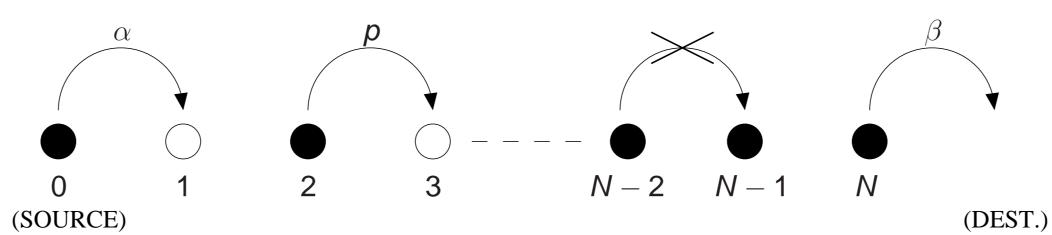
D denotes the progress of packets from source to destination.

THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS

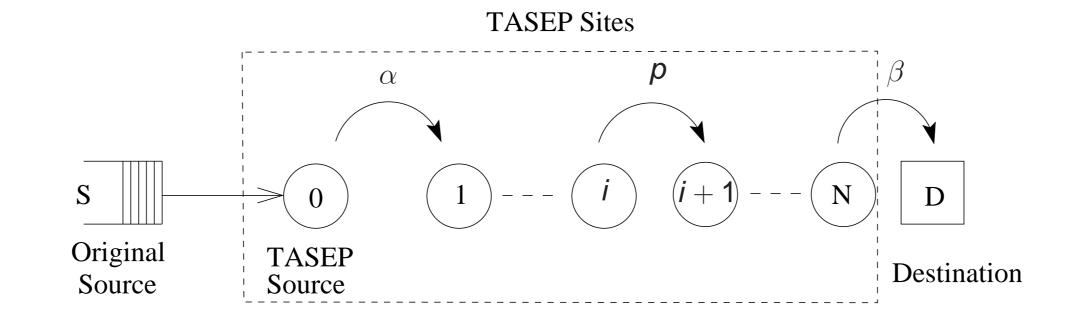
Transmission Policy:

- 1. All the buffering in the network is performed at source nodes.
- 2. Transmissions are not attempted if the adjacent relay's buffer already contains a packet.
- 3. Packets are retransmitted until successfully received.

TASEP Model:



Network flows:



ANALYSIS OF R-TDMA-BASED WIRELESS NETWORKS

Proposition 1 For the r-TDMA-based ad hoc network, the probability of a successful transmission $p_s = \mathbb{P}[SIR > \beta]$ from any node to its n^{th} -nearest-neighbor in a sector ϕ is

$$p_{s} = \left(\frac{(1-\delta)\phi}{(1-\delta)\phi + 2\delta c}\right)^{n},$$

where $c = \pi \Gamma (1 + 2/\gamma) \Gamma (1 - 2/\gamma) \beta^{2/\gamma} = \frac{2\pi^2 \beta^{2/\gamma}}{\gamma \sin(2\pi/\gamma)}$.

Proposition 2 For the r-TDMA-based flow with N relays and success probability p_s , the throughput at steady state is

$$T=\frac{p_s}{2N+1}.$$

Using the definition of transport density, we obtain

$$\rho_{\text{trans}} = \frac{N}{(2N+\sqrt{n})((1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{1}{2}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2, \beta = 10 \text{ dB}}{\sqrt{2N+\sqrt{n}}}\sqrt{2\pi n}\sin\left(\frac{\phi}{2}\right).$$

$$\frac{\phi = \pi/2,$$

ANALYSIS OF ALOHA-BASED WIRELESS NETWORKS

For analytical tractability, we assume the following.

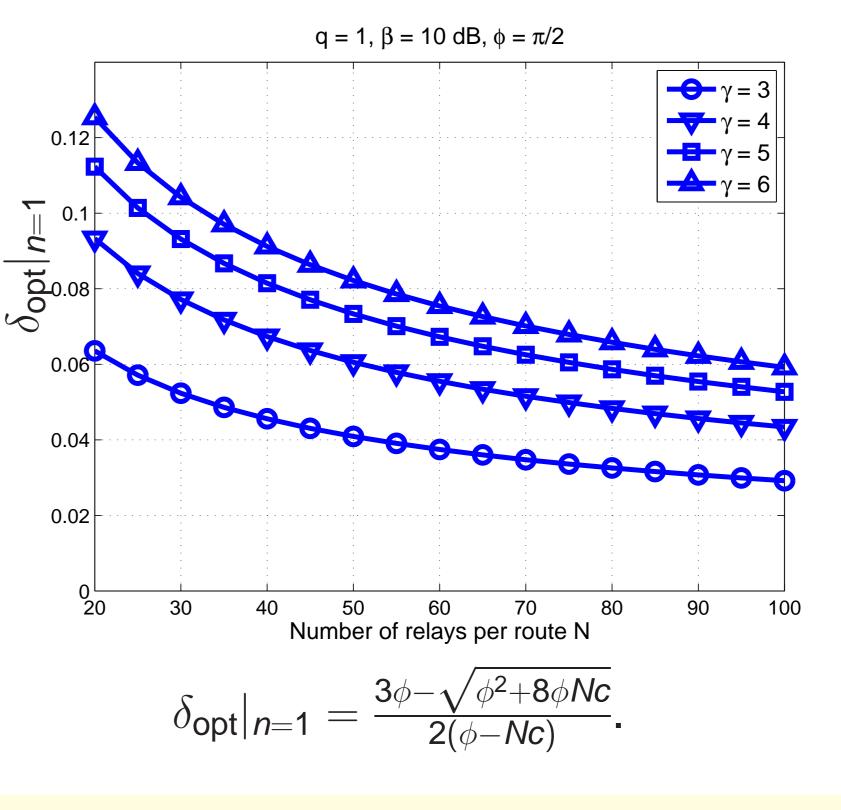
- ▶ We consider long flows, i.e., take $N \gg 1$.
- ▶ We employ the *mean field theory* assumption.

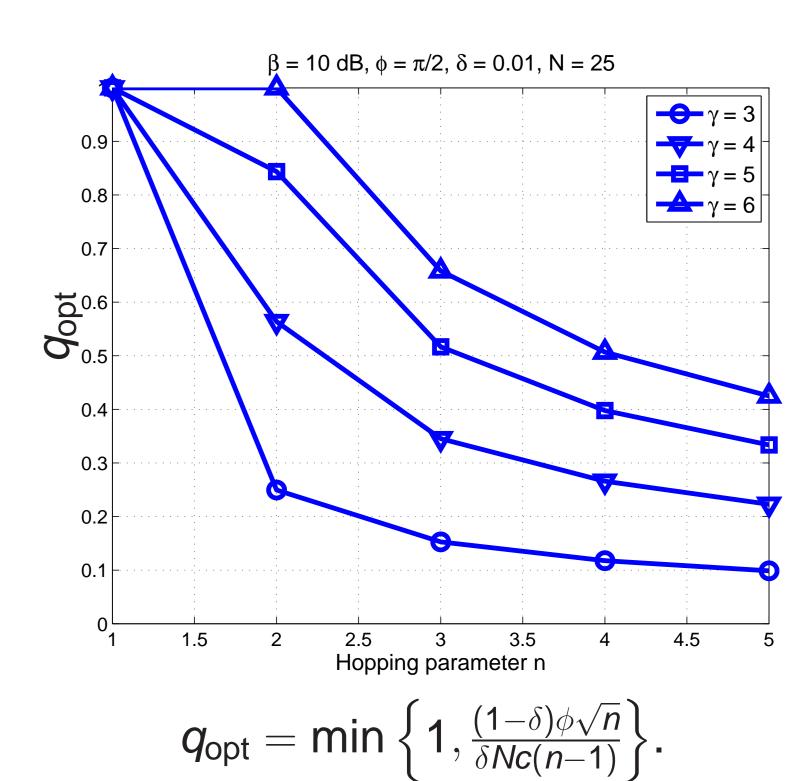
Proposition 3 For the ALOHA-based network with N relay nodes, the packet success probability p_s from any node to its n^{th} -nearest-neighbor is

$$p_s \gtrsim \left(\frac{(1-\delta)\phi}{(1-\delta)\phi + \delta qNc} \right)^n$$

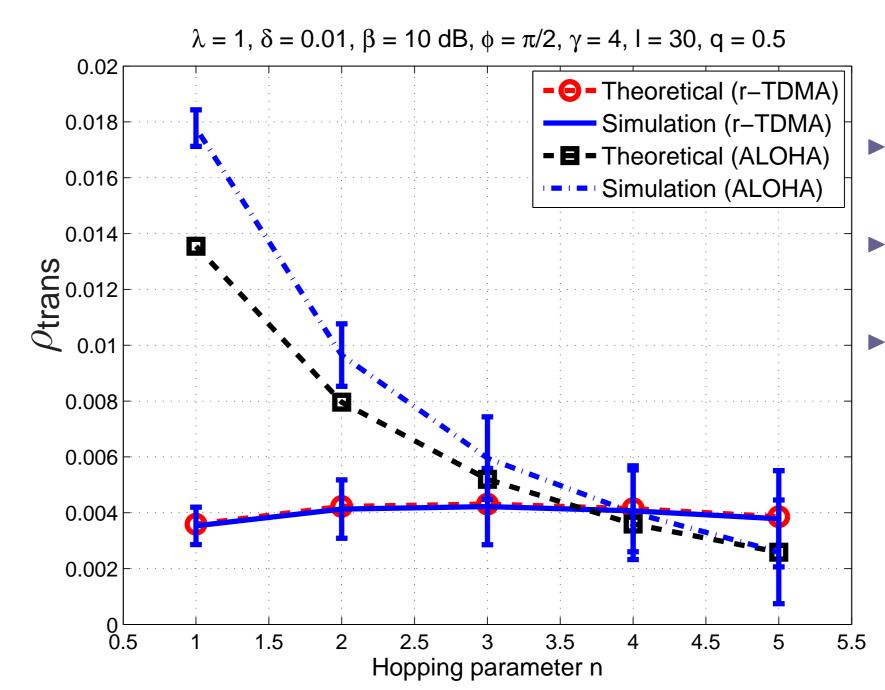
The transport density may be lower-bounded as

$$\rho_{\text{trans}} \gtrsim \frac{Nq\delta(1-\delta)^{n-\frac{1}{2}}\phi^{n-\frac{3}{2}}n^{n/2}}{((1-\delta)\phi\sqrt{n}+\delta qNc)^n}\sqrt{\frac{\pi}{8}}\sin\left(\frac{\phi}{2}\right).$$





SIMULATION RESULTS



- Verification needed since relays may serve multiple nodes.
- ▶ Based on 100 different realizations of the point process on a 40×40 square.
- ► There exist regimes where either scheme performs better.

FUTURE WORK

- ▶ Propose distributed routing algorithms for MANETs that are 'optimal' in nature.
- ► Characterize the performance of other MAC schemes, in particular CSMA and spatial TDMA.
- ▶ Use ideas from Langmuir Kinetics to characterize the TDR region in wireless ad hoc networks.