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Motivation

Large-scale path loss law: signal strength attenuates with
distance d as dγ

S ∝

(

d

d0

)−γ

.

Though it is typically assumed in analysis and design problems
that the path loss exponent (PLE) is known a priori, it is often
not the case.

The PLE has a strong impact on the quality of links, and
therefore needs to be accurately estimated for the efficient
design and operation of systems.
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Motivation (contd.)

Example 1: The information-theoretic capacity of large random
ad hoc networks scales as ∗

n2−γ/2 for 2 6 γ < 3
√

n for γ > 3.

Depending on the value of γ, different routing strategies are
required to be implemented.

∗A. Özgür, O. Lévêque and D. Tse, “Hierarchical Cooperation Achieves
Optimal Capacity Scaling in Ad Hoc Networks,” IEEE Trans. Info. Th., 2007.
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Motivation (contd.)

Example 2: Outage probability in a planar Poisson point
process with Rayleigh fading.
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The system performance critically depends on γ.
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System Model

Receiver

Transmitter

Filled circles: transmitters.
Empty circles: receivers.

An infinite Poisson point
process (PPP) on R

2 with
density λ.

Channel access scheme is
ALOHA.

p is the ALOHA contention
parameter. Therefore, the
set of transmitters forms a
PPP with density λp.

No synchronization.
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System Model (contd.)

Attenuation in the channel: product of

large-scale path loss, with PLE γ.
small-scale fading (m-Nakagami).
m = 1: Rayleigh fading ; m → ∞: no fading.

Noise is AWGN with variance N0.

All the transmit powers are equal to unity (no power control).

Problem: How do you accurately estimate the PLE at each node in
the network in a completely distributed manner?
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What Makes Estimating the PLE Complicated?

The large-scale path loss is commonly taken to be deterministic
while the small-scale fading is modeled as a stochastic process.

This distinction, however, does not hold when the nodes
themselves are randomly arranged. So, we need to consider
the distance and fading ambiguities jointly.

Moreover, PLE estimation needs to be performed during the
initialization of the network. During this phase, the system is
typically interference-limited due to the presence of
uncoordinated transmissions.

Purely RSS-based estimators cannot be used in these situations.
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Overview

Propose three distributed algorithms for estimating the PLE in
large random wireless networks that explicitly take into account

the uncertainty in the locations of the nodes.
the uncertainty in the fading gains across links.
the interference in the network.

Provide simulation results to demonstrate the performance of
the algorithms and quantify the estimation errors.
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The Big Picture

The PLE estimation problem is essentially tackled by equating
the empirical (observed) values of certain network
characteristics to their theoretically established values.

By obtaining measurements over several time slots, the PLE can
be estimated at each node in a distributed fashion.

The three PLE algorithms are each based on a specific
network characteristic:

the mean interference.
the outage probability.
connectivity properties of a node.
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Simulation Details

We use 50, 000 different realizations of the PPP to analyze the
mean error performance of the algorithms, which is characterized

using the ’relative’ MSE, defined as E

[

(γ̂ − γ)
2
]

/γ.

We used p = 0.05 since it was suitable. Note the tradeoffs.

Large p: results in few quasi-different realizations of the
transmitter PPP.
Small p: takes long for the algorithms to convergence.
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Algo. 1: Using the Mean Interference

This algorithm assumes that the network density λ is known.

In theory, the mean interference is given by †

µ = 2πλpA
2−γ
0 / (γ − 2) , (1)

where A0 is the near-field radius of the antenna.

Implementation

Nodes simply need to record the mean strength of the received
power, µ ′, averaged over several time slots.

Equating µ to µ ′, and using the known values of p, A0, and λ,
γ̂ is found from a look-up table.

†J. Venkataraman, M. Haenggi and O. Collins, ”Shot Noise Models for Outage
and Throughput Analyses in Wireless Ad Hoc Networks,” MILCOM, 2006.
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Algo. 1: Using the Mean Interference (contd.)

Relative MSE of γ̂ versus the number of time slots.
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The estimates are fairly accurate over a wide range of parameters.
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Algo 2: Based on (Virtual) Outage Probabilities

This algorithm does not require the knowledge of λ or m.

In a PPP, when the signal power is exponentially distributed, the
probability of a successful transmission ps is

ps = P(SIR > Θ) = exp(−cΘ2/γ), (2)

where c = λpπΓ
(

m + 2
γ

)

Γ
(

1 − 2
γ

)/

(

Γ(m)m2/γ
)

.

Nodes can determine the SIR, and consequently ps by
computing the ratio of the power of the signal (which arrives
from a virtual transmitter, and is assumed to be exponentially
distributed) and the total received power.

Sunil Srinivasa and Martin Haenggi () University of Notre Dame ITA@UCSD 2009 13 / 22



Algo 2: Based on (Virtual) Outage Prob. (contd.)

Implementation: A ’differential’ method.

Obtain a histogram of the observed SIR values measured over
several time slots.

The empirical success probabilities (ps,i = P(SIR > Θi),
i = 1, 2) are obtained at two different threshold values.

Inverting (2), an estimate of γ is obtained as

γ̂ =
2 ln(Θ1/Θ2)

ln (ln ps,1/ lnps,2)
. (3)
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Algo 2: Based on (Virtual) Outage Prob. (contd.)

Relative MSE of γ̂ versus the number of time slots.
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The estimation error increases with larger γ.

Sunil Srinivasa and Martin Haenggi () University of Notre Dame ITA@UCSD 2009 15 / 22



Algo 2: Based on (Virtual) Outage Prob. (contd.)

Relative MSE of γ̂ versus the Nakagami parameter.
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This algorithm performs more accurately at lower values of m.

Sunil Srinivasa and Martin Haenggi () University of Notre Dame ITA@UCSD 2009 16 / 22



Algo 3: Based on the Cardinality of the Tx Set

This algorithm also does not require to know m or λ.

Transmitter node y is in receiver node x’s transmitting set, T(x)

if they are connected, i.e., the SIR at x due to y’s signal is > Θ.

We prove that under the conditions of m ∈ N,

E|T(x)| = N̄T =
Γ(m)

(

1 −
(

2
γ

)m)

Γ(m + 2
γ
)Γ(2 − 2

γ
)Θ2/γ

. (4)

We see that N̄T is inversely proportional to Θ2/γ, and surmise
that this behavior holds at arbitrary m ∈ R

+.
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Algo 3: Based on the Card. of the Tx Set (contd.)

Implementation

For a known threshold Θ1 > 1, at time slot i, 1 6 i 6 N, set

NT ,1(i) =

{
1 if the node can decode a packet
0 otherwise.

Evaluate N̄T ,1 and N̄T ,2 at two different threshold values Θ1 and
Θ2 respectively.

In theory, we obtain N̄T ,1/N̄T ,2 = (Θ2/Θ1)
2/γ

.

Inverting this, we have

γ̂ = (2 ln(Θ2/Θ1)) / ln(N̄T ,1/N̄T ,2). (5)
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Algo 3: Based on the Card. of the Tx Set (contd.)

Relative MSE of γ̂ versus the number of time slots.
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In contrast to Algo. 1 and 2, the relative MSE decreases with γ.
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Algo 3: Based on the Card. of the Tx Set (contd.)

Relative MSE of γ̂ versus the Nakagami parameter.
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The estimates are more accurate at lower m.
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Summary and Discussion

We have addressed the PLE estimation problem in the presence
of node location uncertainties, m-Nakagami fading and most
importantly, interference!

Each of the algorithms are fully distributed and do not require
any information on the location of other nodes or the value of m.

Based on the relative MSE values, we conclude that at low
values of γ, Algo. 1 performs the best (though it requires the
density to be known), while when γ is high, Algo. 3 is preferred.
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Summary and Discussion (contd.)

Each of our algorithms work by equating empirical values with
their corresponding theoretically established ones.

The caveat is that the theoretical results are for an “average
network” while in practice, we have only a single realization of
the node distribution at hand. Thus, in general, the estimates
we obtain are biased.

This also explains the fact that the performance of Algorithms 2
and 3 is better at lower m.

We remark that the bias (and the MSE) can be significantly
lowered if nodes have access to several independent realizations
of the point process or if they are allowed to communicate.
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