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NEW PARADIGMS FOR THE ANALYSIS OF AD HOC NETWORKS

Abstract

by

Sunil Srinivasa

This proposal introduces two new paradigms that help simplify the analysis of ad

hoc networks:

First, we use concepts from stochastic geometry to analytically determine the dis-

tribution of internode distances in a finite uniformly random network. The key finding

is that when a known number of nodes are uniformly randomly placed inside a ball of

arbitrary dimensions, the probability density function of the internode distances follows

a generalized beta distribution. This result is applied to study important single-hop

characteristics of ad hoc networks such as interference, outage and connectivity.

Second, we consider a multihop wireless line network with a single unidirectional

data flow. We show that by simply limiting the buffer sizes at the relay nodes to unity

and making minor amendments to the MAC protocol, the flow of traffic in the network

can be efficiently regulated in a completely distributed fashion. Upon employing this

revised transmission policy, we observe that the transport of packets in the system is

analogous to the flow of particles in the totally asymmetric simple exclusion process.

Using existing results from statistical mechanics, we analytically characterize the end-

to-end delay and throughput performance of multihop wireless networks at steady state

for two different channel access schemes and provide applications of our findings for large

wireless line networks.

Proposed research goals are to characterize the delay and throughput performance

in a system of networks and to design appropriate routing protocols and network ar-

chitectures that optimize the system performance. Additional objectives are to study

the throughput-delay-reliability tradeoffs and to understand the transient behavior of

wireless line networks.
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CHAPTER 1

INTRODUCTION

The past few years have witnessed a surge of revolutionary research developments

in the area of wireless communications and networking. Notable contributions include

the near-capacity-achieving LDPC and turbo codes, which have now become a stan-

dard in the developing market for highly efficient transmission schemes, and technical

breakthroughs such as CDMA, MIMO, and OFDM that have brought completely new

perspectives on how to intelligently communicate over wireless channels. Such advances

in information theory and communication theory have significantly helped further wire-

less systems’ performance in a very short span of time and have provided the thrust

for the rapid evolvement of high-rate data communication. However, inherent difficul-

ties have stunted our progress from the era of tetherless connectivity predominated by

centralized cellular networks and WLANs to the era of ubiquitous wireless connectivity

predominated by decentralized ad hoc networks [1].

First, while classical information theory has been extremely successful for studying

point-to-multipoint links, it is not yet developed enough to characterize the intricacies

of multipoint-to-multipoint networks that arise due to the inherent interactions between

nodes. In fact, the capacity of a general relay channel with just three nodes is still an

open problem. Second, due to the multihop nature of data communication in an ad

hoc network, the flows across various links are spatially and temporally correlated and

this fact needs to be explicitly considered during their analysis and design. Queueing

theory has proven to be particularly useful in this regard, but the analysis gets very

cumbersome as the network size grows. Third, in order to optimize the performance of

ad hoc networks, a cross-layer design needs to be adopted wherein the interdependencies

among the layers of the protocol stack must be taken into account [2]. Furthermore,

the design approach needs to be adaptive to changes in the system and thus is quite a
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challenging task. Owing to such barriers, the performance of general ad hoc networks

has not yet been quantified, and optimal ways of designing and operating them are

known only for a few specific and/or oversimplified cases.

In view of these difficulties, researchers are turning to other branches of study to

obtain ideas and methodologies that help better understand and characterize the dy-

namical behavior of wireless networks. Of late, statistical physics has, in particular,

captured the attention of the research community since it contains a rich collection of

mathematical tools and methodologies for studying interacting many-particle systems.

Statistical physics methodologies such as the mean field theory has been successfully

applied to study coding over multiuser MIMO channels [3, 4]. In [5], the authors use

ideas such as the replica method to characterize the performance of multiuser detection

in CDMA. The statistical mechanics of interfering transmissions in wireless networks has

been studied in [6]. Tools from statistical physics have also been successfully applied

to study interesting problems in random communication networks such as percolation,

connectivity and capacity [7]. Using analogous concepts from other subject areas has

considerably enhanced our understanding of wireless networks and has helped further

the research in the ad hoc networking community.

On similar lines, our work introduces two new paradigms that help simplify the anal-

ysis and design of ad hoc networks:

First we use concepts from stochastic geometry to analytically determine the distribu-

tion of internode distances in a finite uniformly random network. This is then applied

to study important single-hop characteristics of ad hoc networks such as interference,

outage, connectivity, energy consumption and routing.

Second, we apply some results from the Totally Asymmetric Simple Exclusion Process

(TASEP), a simple model in statistical mechanics describing particle flow in an interact-

ing system, to characterize the throughput and delay performance of multi-hop wireless

line networks.

The detailed organization of the proposal is as follows.

Chapter 2 deals with the theory and applications of internode distance distributions

in random wireless networks. When determining distance distributions in random net-

works, the underlying nodal arrangement is almost universally taken to be a stationary
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Poisson point process. While this may be a good approximation in some cases, there are

also certain shortcomings to this model such as the fact that in practical networks, the

number of nodes in disjoint areas are not independent. This chapter considers a more

realistic network model where a known and fixed number of nodes are independently

distributed in a given region and characterizes the distribution of the Euclidean intern-

ode distances. The key finding is that when the nodes are uniformly randomly placed

inside a ball of arbitrary dimensions, the probability density function of the internode

distances follows a generalized beta distribution. This result is applied to study single-

hop wireless network characteristics such as energy consumption, interference, outage

and connectivity.

In Chapter 3, we consider a multihop wireless line network with a single unidirectional

data flow. We show that by simply limiting the buffer sizes at the relay nodes to unity

and making minor amendments to the MAC protocol, the flow of traffic in the network

can be efficiently regulated in a completely distributed fashion. Upon employing this

revised transmission policy, we observe that the transport of packets in the system is

analogous to the flow of particles in the totally asymmetric simple exclusion process

(TASEP). Using existing results from statistical mechanics, we characterize the end-to-

end delay and throughput performance of multihop wireless networks at steady state

for two different channel access schemes. Additionally, we study the spatial correlations

involved between the delays across different hops and provide applications of our findings

for large wireless line networks. This work also aims at promoting the TASEP as a

powerful tool for analyzing the performance of wireless networks.

Chapter 4 describes the proposed future work and discusses several interesting open

questions. The basic research goals are to analytically characterize (or at least pro-

vide upper and lower bounds to) the delay and throughput performance in a system of

multihop wireless networks, and to design appropriate routing protocols and network

architectures that optimize the system performance. Additional objectives are to study

the throughput-delay-reliability tradeoffs in multihop line networks and to understand

their transient behavior, which refers to the dynamics of the network before it reaches

steady state.
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CHAPTER 2

DISTANCE DISTRIBUTIONS IN FINITE UNIFORMLY RANDOM NETWORKS:
THEORY AND APPLICATIONS

2.1 Introduction

2.1.1 Motivation

In wireless channels, the received signal strength falls off with distance according to

a power law, at a rate termed the large scale path loss exponent (PLE) [8]. Given a link

distance l, the signal power at the receiver is attenuated by a factor of l−α, where α is

the PLE. Consequently, in wireless networks, distances between nodes strongly impact

the signal-to-noise-and-interference ratios (SINRs), and, in turn, the link reliabilities.

The knowledge of the nodal distances is therefore essential for the performance analysis

and the design of efficient protocols and algorithms.

In many wireless networks, nodes can be assumed to be scattered randomly over

an area or volume; the distance distributions then follow from the spatial stochastic

process governing the locations of the nodes. For the sake of analytical convenience, the

arrangement of nodes in a random network is commonly taken to be a homogeneous (or

stationary) Poisson point process (PPP). For the resulting so-called “Poisson network”

of density λ, the number of nodes in any given set V of Lebesgue measure |V | is Poisson

with mean λ|V |, and the numbers of nodes in disjoint sets are independent. Even though

the PPP model is a good approximation when the network density is known, and can

lead to some insightful results, practical networks differ from Poisson networks in certain

aspects. First, networks are usually formed by scattering a fixed (and finite) number of

nodes in a given area. In this case, the nodal arrangement is a binomial point process

(BPP), which we define shortly. Secondly, since the area or volume of deployment is

necessarily finite, the point process formed is non-stationary and often non-isotropic,

meaning that the network characteristics as seen from a node’s perspective such as the
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nearest-neighbor distance or the interference distribution is not the same for all nodes.

Furthermore, the numbers of nodes in disjoint sets are not independent; in the case of

the BPP, they are governed by a multinomial distribution.

Definition 2.1.1. Formally, a BPP Φ is formed as a result of distributing N points
independently uniformly in a compact set W .

The density of the BPP at any location x is defined to be λ(x) = N
|W |1W (x), where

1 denotes the indicator function. In this work, we consider W ⊂ R
d (d is an arbitrary

positive integer). For any set V ⊂ R
d, the number of points in V , Φ(V ), is binomial(n, p)

with parameters n = N and p = |V ∩W |/|W | [9]. By this property, the number of nodes

in disjoint sets are joint via a multinomial distribution. Accordingly, for disjoint sets

V1, . . . , Vk and n = n1 + . . . + nk, we have

Pr(Φ(V1) = n1, . . . , Φ(Vk) = nk) =
n!

n1! · · ·nk!

|V1 ∩ W |n1 · · · |Vk ∩ W |nk

|W |n .

If the number of nodes or users is known, the PPP is clearly not a good model, since

realizations of the process may have more nodes than the number of nodes deployed or

no nodes at all. In particular when the number of nodes is small, the Poisson model

is inaccurate. The main shortcoming of the Poisson assumption is, however, the inde-

pendence of the number of nodes in disjoint areas. For example, if all the N nodes are

located in a certain part of the network area, the remaining area is necessarily empty.

This simple fact is not captured by the Poisson model. This motivates the need to study

and accurately characterize finite uniformly random networks, in an attempt to extend

the plethora of results for the PPP to the often more realistic case of the BPP. We call

this new model a binomial network, and it applies to mobile ad hoc and sensor networks

and wireless networks with infrastructure, such as cellular telephony networks.

In this work, we analytically characterize the distribution of internode distances in

a binomial network wherein a known number of nodes are independently distributed

in a compact set. As a special case, we derive the Euclidean distance properties in a

d-dimensional isotropic1 BPP, and use it to study relevant problems in wireless networks

such as energy consumption, design of efficient forwarding and localization algorithms,

interference characterization, and outage and connection probability evaluation.

1A point process is said to be isotropic if its distribution is invariant to rotations.
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2.1.2 Related Work

Even though the knowledge of the statistics of the node locations in wireless networks

is crucial, relatively few results are available in the literature in this area. Moreover,

much of the existing work deals only with first and perhaps second moments of the

distances (means and variances) or characterizes the exact distribution only for very

specific system models.

In [10], the probability density function (pdf) and cumulative distribution function

(cdf) of the distances between two randomly chosen nodes are derived for networks with

uniformly random and Gaussian distributed nodes over a rectangular area. [11] studies

mean internodal distance properties for several kinds of multihop systems such as ring

networks, Manhattan street networks, hypercubes and shufflenets. [12] provides closed-

form expressions for the distributions in d-dimensional homogeneous PPPs and describes

several applications of the results for large networks. [13] considers one-dimensional

Poisson networks and analyzes the distribution and moments of the single-hop distance,

which is defined as the maximum possible distance between two nodes that can commu-

nicate with each other. [14] derives the joint distribution of distances of nodes from a

common reference point for networks with a finite number of nodes randomly distributed

on a square and [15] determines the pdf and cdf of the distance between two randomly

selected nodes in square random networks.

2.2 Distribution of Internode Distances

In this section, we determine the distribution of the Euclidean distance to the nth

nearest point from an arbitrary reference point for a general BPP. In the special case of

a d-dimensional isotropic BPP, we establish that this random variable (r.v.) follows a

generalized beta distribution. We also derive the distances to the nearest and farthest

nodes and the void probabilities.

Consider the BPP Φ with N points uniformly randomly distributed in a compact

set W ⊂ R
d (see Fig. 2.1). Let Rn denote the r.v. representing the Euclidean distance

from an arbitrary reference point x to the nth nearest node of the BPP2 and let bd(x, r)

denote the d-dimensional ball of radius r centered at x.

2For the rest of the chapter, we assume that x is not a point of the BPP. However, if x ∈ Φ, the
remaining point process simply becomes a BPP with N − 1 points.
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W

r
x

Figure 2.1. A BPP with N = 16 points uniformly randomly distributed in an arbitrary
compact set W . We wish to determine the distribution of the distances to the other
points from the reference point x. The dashed circle represents the ball bd(x, r).

The complementary cumulative distribution function (ccdf) of Rn is the probability that

there are less than n points in bd(x, r) :

F̄Rn(r) =

n−1
∑

k=0

(

N

k

)

pk(1 − p)N−k, 0 ≤ r ≤ R, (2.1)

where p = |bd(x, r) ∩ W |/|W |. In the case of a non-homogeneous BPP with a general

density function λ(x), p =
∫

bd(x,r)∩W λ(x)dx.

F̄Rn can be written in terms of the regularized incomplete beta function as

F̄Rn(r) = I1−p(N − n + 1, n), 0 ≤ r ≤ R, (2.2)

where

Ix(a, b) =

∫ x

0 ta−1(1 − t)b−1dt

B(a, b)
.

Here, B(a, b) denotes the beta function, which is expressible in terms of gamma functions

as B(a, b) = Γ(a)Γ(b)/Γ(a + b).

The pdf of the distance function is given by

fRn = −dF̄Rn/dr

=
dp

dr

(1 − p)N−npn−1

B(N − n + 1, n)
. (2.3)

We now analytically derive the pdf of the Euclidean distance between points in a d-

dimensional isotropic BPP, and later, in Section 2.3, compute its moments. In Section

2.4, we derive the pdf of the distances when W is a general l-sided regular polygon. In

Section 2.5, we apply our findings to the study of wireless networks.
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Theorem 2.2.1. In a point process consisting of N points uniformly randomly dis-
tributed in a d-dimensional ball of radius R centered at the origin, the Euclidean distance
Rn from the origin to its nth nearest point follows a generalized beta distribution, i.e.,

fRn(r) =
d

R

B(n − 1/d + 1, N − n + 1)

B(N − n + 1, n)
β

(

( r

R

)d

; n − 1

d
+ 1, N − n + 1

)

, r ∈ [0, R],

where β(x; a, b) is the beta density function3 defined as β(x; a, b) = 1
B(a,b)x

a−1(1−x)b−1.

Proof: For the isotropic d-dimensional BPP, we have W = bd(o, R) where o repre-

sents the origin. The volume of this ball |W | is equal to cdR
d, where

cd = |bd(o, 1)| =
πd/2

Γ(1 + d/2)

is the volume of the unit ball in R
d [9]. Important cases include c1 = 2, c2 = π and

c3 = 4π/3. The density of this process is equal to N/(cdR
d) inside the ball.

With the reference point being the origin, note that p = cdr
d/cdR

d = (r/R)
d

and

from (2.3), we have

fRn(r) =
d

R

( r

R

)d−1 (1 − p)N−npn−1

B(N − n + 1, n)

=
d

R

(1 − p)N−npn−1/d

B(N − n + 1, n)

=
d

R

B(n − 1/d + 1, N − n + 1)

B(N − n + 1, n)
β

(

( r

R

)d

; n − 1

d
+ 1, N − n + 1

)

(2.4)

for 0 ≤ r ≤ R. The final equality casts Rn as a generalized beta-distributed variable.

�

Corollary 2.2.2. For the practical cases of d = 1 and d = 2, we have

fRn(r) =
1

R
β
( r

R
; n, N − n + 1

)

and

fRn(r) =
2

R

Γ(n + 1
2 )Γ(N + 1)

Γ(n)Γ(N + 3
2 )

β

(

r2

R2
; n +

1

2
, N − n + 1

)

respectively.

Fig. 2.2 plots the distance pdfs for the cases of d = 1 and d = 2.

Remarks:

1. The void probability p0
B of the point process is defined as the probability of there

being no point of the process in an arbitrary test set B [9]. For a BPP with N

points distributed over a set W , it is easy to see that

p0
B = (1 − |B ∩ W |/|W |)N . (2.5)

3Mathematica: PDF[BetaDistribution[a, b],x].
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For the isotropic BPP considered above, when the test set is B = bd(o, r), we have

p0
B =

(

1 − (r/R)
d
)N

.

2. Of interest in particular are the nearest- and farthest-node distances. The nearest-

node distance pdf is given by

fR1
(r) =

dN

r

(

1 −
( r

R

)d
)N−1

( r

R

)d

, (2.6)

and the distance to the farthest point from the origin is distributed as

fRN (r) =
dN

r

( r

R

)Nd

, 0 ≤ r ≤ R. (2.7)

Both are generalized Kumaraswamy distributions [16].

3. For a one-dimensional BPP, fRn(r) = fRN−n+1
(R− r), and therefore knowledge of

the distance pdfs for the nearest ⌈N/2⌉ nodes gives complete information on the

distance distributions to the other points.

4. If a point of the BPP, x, is located at the origin, the remaining N − 1 points are

uniformly distributed in bd(o, R). Thus, the pdf of the Euclidean distance from x

to its neighbors is identical to (2.4), with N replaced by N − 1. Also note that

(2.4) also holds for any reference point x for which 0 ≤ r ≤ R − ‖x‖.

We wish to compare the distance distributions from the origin for an isotropic BPP

and a PPP with the same density. However, in general, the PPP may have fewer points

than the number dropped. In order to make a fair comparison, we condition on the

fact that there are at least N points present in the PPP model. The following corollary

establishes the distance pdfs for such a conditioned PPP. Also note that conditioned on

there being exactly N points present, the PPP is equivalent to a BPP [9].

Corollary 2.2.3. Consider a PPP of density λ over a finite volume bd(o, R). Condi-
tioned on there being at least N points in the ball, the distance distribution from the
origin to the nth nearest node (n ≤ N) is given by

f ′
Rn

(r) =
λdcdr

d−1
(

An−1(r)
(
∑∞

k=N−n Bk(r)
))

∑∞
k=N Ak(R)

, r ∈ [0, R], (2.8)

where Ak(r) := e−λcdrd (

λcdr
d
)k

/k! and Bk(r) := e−λcd(Rd−rd) (λcd

(

Rd − rd
))k

/k!.
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Proof: The complementary conditional cdf of Rn is given by

F̄ ′
Rn(r) = Pr (Φ (bd(o, r)) < n | Φ (bd(o, R)) ≥ N)

=
Pr (Φ (bd(o, r)) < n, Φ (bd(o, R)) ≥ N)

Pr (Φ (bd(o, R)) ≥ N)

(a)
=

∑n−1
k=0 Pr (Φ (bd(o, r)) = k) Pr (Φ (bd(o, R) \ bd(o, r)) ≥ N − k)

Pr (Φ (bd(o, R)) ≥ N)

=

∑n−1
k=0 Ak(r)

(

1 −
∑N−k−1

l=0 Bl(r)
)

∑∞
k=N Ak(R)

, (2.9)

where (a) is obtained from the property that the number of points of the PPP in disjoint

sets are independent of each other. It is easy to see that

d

dr
Ak(r) =











λdcdrd−1 (Ak−1(r) − Ak(r)) k > 0

−λdcdr
d−1A0(r) k = 0

(i)

and

d

dr
Bl(r) =











λdcdr
d−1 (Bl(r) − Bl−1(r)) l > 0

λdcdr
d−1B0(r) l = 0.

(ii)

Therefore, we have

d

dr

N−k−1
∑

l=0

Bl(r) = λdcdrd−1BN−k−1(r). (iii)

The details of the remainder of the proof are straightforward but tedious and are omitted

here. Since the pdf of the conditional distance distribution is f ′
Rn

= −dF̄ ′
Rn/dr, one

basically has to differentiate the numerator in (2.9), and after some simplifications using

(i)-(iii), it will be seen that the conditional distance pdf is identical to (2.8). �

Fig. 2.2 depicts the pdfs of the distances for one- and two-dimensional BPPs (from

(2.4)) and compares it with the distance pdfs for a conditioned PPP with the same

density.

When a large number of points are distributed randomly over a large area, their

arrangement can be well approximated by an infinite homogeneous PPP. The PPP

model for the nodal distribution is ubiquitously used for wireless networks and may

be justified by claiming that nodes are dropped from an aircraft in large numbers; for

mobile ad hoc networks, it may be argued that terminals move independently of each

other. We now present a corollary to the earlier theorem that reproduces a result from

[12].
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Figure 2.2. Distance pdfs for each of the neighbors for one- and two- dimensional
binomial and conditioned Poisson networks with N = 10 and R = 10.

Corollary 2.2.4. In an infinite PPP with density λ on R
d, the distance Rn, between a

point and its nth neighbor is distributed according to the generalized gamma distribution.

fRn(r) = e−λcdrd d(λcdr
d)n

rΓ(n)
, r ∈ R. (2.10)

Proof: If the total number of points N tends to infinity in such a way that the

density λ = N/(cdR
d) remains constant, then the BPP asymptotically (as R → ∞)

behaves as a PPP [9]. Taking R = d
√

N/cdλ and applying the limit as N → ∞, we

obtain for a PPP,

fRn(r) = lim
N→∞

d

R

(1 − p)
N−n

pn−1/dΓ(N + 1)

Γ(N − n + 1)Γ(n)

=
d

rΓ(n)
(λcdrd)n lim

N→∞

(

1 − λcdr
d

N

)N
N(N − 1) . . . (N − n + 1)

Nn

= e−λcdrd d(λcdrd)n

rΓ(n)
.

for r ∈ R. This is an alternate proof to the one provided in [12]. �
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2.3 Moments of the Internode Distances

We now consider the isotropic d-dimensional BPP and use the internode distance

pdf (2.4) to compute its moments. The γth moment of Rn is calculated as follows4.

E[Rγ
n] =

d

R

1

B(N − n + 1, n)

∫ R

0

[

rγ
( r

R

)nd−1
(

1 −
( r

R

)d
)N−n

]

dr.

(a)
=

Rγ

B(N − n + 1, n)

∫ 1

0

tn+γ/d−1(1 − t)N−ndt

=
Rγ

B(N − n + 1, n)
Bx(n + γ/d, N − n + 1)|10

(b)
=











RγΓ(N+1)Γ(γ/d+n)
Γ(n)Γ(γ/d+N+1) if n + γ/d > 0

∞ otherwise

=











Rγn[γ/d]/(N + 1)[γ/d] if n + γ/d > 0

∞ otherwise,
(2.11)

where Bx[a, b] is the incomplete beta function5 and x[n] = Γ(x + n)/Γ(x) denotes the

rising Pochhammer symbol notation. Here, (a) is obtained by making the substitution

r = Rt1/d and (b) using the following identities:

B0(a, b) =











0 Re(a) > 0

−∞ Re(a) ≤ 0,

and B1(a, b) = B(a, b) if Re(b) > 0.

The expected distance to the nth nearest node is thus

E(Rn) =
Rn[1/d]

(N + 1)[1/d]
, (2.12)

and the variance of Rn is easily calculated as

Var[Rn] =
R2n[2/d]

(N + 1)[2/d]
−
(

Rn[1/d]

(N + 1)[1/d]

)2

. (2.13)

Remarks:

1. For one-dimensional networks, E[Rn] = Rn/(N + 1). Thus, on an average, it is as

if the points are arranged on a regular lattice. In particular, when N is odd, the

middle point is located exactly at the center on average.

4Note that γ ∈ R in general, and is not restricted to being an integer.
5Mathematica: Beta[x, a, b].
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2. On the other hand, as d → ∞, E[Rn] → R and it is as if all the points are

equidistant at maximum distance R from the origin.

3. In the general case, the mean distance to the nth nearest node varies as n1/d for

large n. This follows from the series expansion of the Pochhammer sequence6 [17]

n[q] = nq (1 − O (1/n)) .

Also, for d > 2, the variance goes to 0 as n increases. This is also observed in the

case of a Poisson network [12].

4. By the triangle inequality, the mean internodal distance between the ith and jth

nearest nodes from the origin, Dij , is bounded as (assuming i < j)

R
(

j[1/d] − i[1/d]
)

(N + 1)[1/d]
< E[Dij ] <

R
(

i[1/d] + j[1/d]
)

(N + 1)[1/d]
.

5. For the special case of γ/d ∈ Z, we obtain

E[Rγ
n] = Rγ

(

n + γ/d − 1

γ/d

)/(

N + γ/d

γ/d

)

.

2.4 Distance Distributions in Regular Polygonal BPPs

In this section, we derive the pdf of the distance to the nth nearest node from the

origin, in BPPs distributed on a l-sided regular polygon W . Assume that the polygon is

centered at the origin and |W | = A. Then, its inradius and circumradius are respectively

given by

Ri =

√

A

l
cot
(π

l

)

and Rc =

√

2A

l
csc

(

2π

l

)

.

Also, let the total number of nodes be N and assume that no point of the process is at

the origin.

Clearly, when r ≤ Ri, b2(o, r) lies completely within the polygon and the number

of points lying in it, Φ(b2(o, r)), is binomial distributed with parameters n = N and

p = πr2/A.

When Ri < r ≤ Rc, |W ∩ b2(o, r)| can be evaluated by considering the regions of the

circle lying outside the polygon (see the shaded segment in Fig. 2.3). It is easy to see

6The notation f(n) = O(g(n)) means that there exists a constant c and integer N such that f(n) ≤
cg(n) for n > N .

13



B
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θ

O

r

Ri

Figure 2.3. Section of a l-sided regular polygon depicting one of its sides. O is the origin.
For Ri < r ≤ Rc, the area of the shaded segment ABC is r2θ − Ri

√

r2 − R2
i .

that Φ(b2(o, r)) follows a binomial distribution with parameters n = N and

q =
πr2 − lr2θ + lRi

√

r2 − R2
i

A
,

where θ = cos−1(Ri/r). Following (2.3), we can write

fRn(r) =























2rπ
A

(1−p)N−npn−1

B(N−n+1,n) 0 < r ≤ Ri

2r(π−lθ)
A

(1−q)N−nqn−1

B(N−n+1,n) Ri < r ≤ Rc

0 Rc < r.

(2.14)

Fig. 2.4 plots the pdf of the farthest neighbors in a BPP with 10 nodes, distributed on

a l-sided regular polygon with A = 100, for l = 3, 4, 5 and l → ∞.

2.5 Applications to Wireless Networks

We now apply the results obtained in the previous section to wireless networks. For

the system model, we assume a d-dimensional network over a ball bd(o, R), where N

nodes are uniformly randomly distributed. Nodes are assumed to communicate with a

base station (BS) positioned at the origin o. The attenuation in the channel is modeled

by the large scale path loss function g with PLE α, i.e., g(x) = ‖x‖−α. The channel

access scheme is taken to be slotted ALOHA with contention parameter δ.

2.5.1 Energy Consumption

The energy that is required to successfully deliver a packet over a distance r in a

medium with PLE α is proportional to rα. Therefore, the average energy required to

14
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deliver a packet from the nth nearest neighbor to the BS is given by (2.11), with γ = α.

This approximately scales as nα/d when the routing is taken over single hops. When

α < d, it is more energy-efficient to use longer hops than when the PLE is greater than

the number of dimensions.

2.5.2 Design of Routing Algorithms

The knowledge of nodal distances is also useful for the analysis and design of rout-

ing schemes for wireless networks. We illustrate this via an example wherein a greedy

forwarding strategy that maximizes the expected progress of a packet towards its desti-

nation needs to be designed.

Consider the scenario where N nodes are uniformly distributed in a disk of radius R.

Assume that several packets need to be forwarded from the BS to an arbitrarily chosen

destination node D, which lies far away from the BS. We also assume that each node has

a peak (transmit) power constraint of P ≪ Rα. Let us suppose that the nodes adopt a

15



greedy forwarding strategy wherein each relay node Xi that gets a packet relays it to its

farthest neighbor in a sector of angle φ (0 ≤ φ ≤ π), i.e., along ±φ/2 around the Xi-D

axis (see Fig. 2.5). Evidently, for large φ, the direction of the farthest neighbor in the

sector may be off the Xi-D axis, while for small φ, there may not be enough nodes inside

the sector. The natural question to ask is: what value of φ maximizes the expected

progress of packets7 towards the destination?

φ

D

Xi+2

Xi+1

Xi

r

Ψ

Figure 2.5. The greedy forwarding strategy. Each relay Xi forwards the packet to its
farthest neighbor lying inside the sector of radius φ around the Xi-D axis. The thick
lines represent the path taken by the packet (through three arbitrary relays) for this
particular realization.

A problem of similar flavor is studied in [18] for an interference-limited PPP, wherein

the authors evaluate the optimal density of transmitters that maximizes the expected

progress of a packet. In [19], the author determines the energy required to deliver a

packet over a certain distance for various routing strategies in a PPP. In [20], the optimal

transmission radius that maximizes the expected progress of a packet is determined for

different transmission protocols in Poisson packet radio networks.

In order to evaluate the progress of a packet in the binomial network, we first note

that if there are exactly k nodes in an arbitrary sector of angle φ and radius r = P 1/α

(which is the range of transmission), the average distance to the farthest (kth) neighbor

in that sector is the same as (2.12)8, with n = k, R = r and d = 2. We also know that

the number of nodes lying in that sector is binomial with parameters N and
(

r2φ/2πR2
)

.

Thus, the mean distance to the farthest neighbor in the considered sector can be written

7We define the progress of a packet from a relay node Xi as the effective distance travelled along the
Xi-D axis.

8This follows from the observation that in (2.1), the distance distributions depend only on p =
|b2(x, r) ∩ W |/|W |, and the values of p for the sector and the circle are the same.
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as
N
∑

k=1

(

N

k

)(

r2φ

2πR2

)k (

1 − r2φ

2πR2

)N−k
2rk

2k + 1
. (2.15)

Note that the sectors emanating from nodes Xi and Xi+1 overlap partially, and also,

the total number of nodes is fixed; therefore the mean distance to the farthest neighbor,

E[X ′], is actually upper-bounded by (2.15). However, since we consider the farthest

neighbors, the sectoral overlap is small.

Next, let Ψ denote the angle between the line connecting Xi to its farthest neigh-

bor (Xi+1) and the Xi-D axis. Since the nodal distribution is uniformly random, Ψ

is uniformly distributed on [−φ/2, φ/2]. The expected progress of a packet is E[X ] =

E[X ′]E[cos(Ψ)] since Ψ and X ′ are independent of each other, and is upper-bounded as

E[X ] ≤ 2

φ
sin

(

φ

2

) N
∑

k=1

2P 1/αk

2k + 1

(

N

k

)(

P 2/αφ

2πR2

)k (

1 − P 2/αφ

2πR2

)N−k

. (2.16)

The optimum value of φ that maximizes the progress of packets can be numerically

determined from (2.16).

Fig. 2.6 plots the expected progress of a packet (upper bound) versus φ for several

values of N using (2.16), and compares it with the empirical value, obtained via simula-

tion. We see that the bound is reasonably tight, in particular at lower N . The optimum

values of φ are also marked in the figure.

2.5.3 Localization

In wireless networks, localization is an integral component of network self-configuration.

Nodes that are able to accurately estimate their positions can support a rich set of ge-

ographically aware protocols and report the regions of detected events. Localization is

also useful for performing energy-efficient routing in a decentralized fashion.

In this section, we investigate conditional distance distributions and study their

usefulness to localization algorithms. We consider the scenario wherein a few nodes

precisely know or can accurately estimate their distances from the BS. What can be

said about the distance statistics of the other nodes given this information?

Suppose we know that the kth nearest neighbor is at distance s from the center9.

Then, clearly, the first k−1 nodes are uniformly randomly distributed in bd(o, s) while the

9Based on the RSS from the base station, perhaps averaged over a period of time to eliminate the
variations due to fading, nodes can determine how many other nodes are closer to the transmitter than
they are. This way, a node would find out that it is the kth nearest neighbor to the base station.
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Figure 2.6. The expected progress of a packet (empirical and upper bound) for various
values of N . The square markers correspond to the optimum values of φ that maximize
the packet’s progress.

more distant nodes are uniformly randomly distributed in bd(o, R) \ bd(o, s). Following

(2.4), the distance distributions of the first k − 1 nearest neighbors from the origin can

be written as

fRn(r | Rk = s) =
d

s

B(n − 1/d + 1, k − n)

B(k − n, n)
β

(

(r

s

)d

; n − 1

d
+ 1, k − n

)

, n < k

for 0 ≤ r ≤ s, which again follows a generalized beta distribution.

For the remaining nodes, i.e., for n > k, we have in r ∈ [s, R],

fRn(r | Rk = s) = − d

dr
I1−q(N − n + 1, n − k)

=
drd−1

Rd − sd

(1 − q)N−n qn−k−1

B(N − n + 1, n − k)

where q = (rd − sd)/(Rd − sd).

The moments of Rn are also straightforward to obtain. Following (2.11), we see that for

n < k and n + α/d > 0,

E[Rα
n | Rk = s] =

sαn[α/d]

(k + 1)[α/d]
. (2.17)
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For n > k, we have

E[Rα
n | Rk = s] =

∫ R

s

drα+d−1

Rd − sd

(1 − q)
N−n

qn−k−1

B(N − n + 1, n − k)
dr

=
1

B(N − n + 1, n − k)

∫ 1

0

qn−k−1(1 − q)N−n
(

q
(

Rd − sd
)

+ sd
)α/d

dq

=
sα

(n − k)B(N − n + 1, n − k)
F1

(

n − k; n − N,−α

d
; n − k + 1; 1, 1 − Rd

sd

)

,

where F1[a; b1, b2; c; x, y] is the Appell hypergeometric function of two variables10.

Often, it is easiest to measure the nearest-neighbor distance. Give this distance as

s, we have for n > 1,

fRn(r | R1 = s) =
drd−1

Rd − sd

(

1 −
(

rd−sd

Rd−sd

))N−n (
rd−sd

Rd−sd

)n−2

B(N − n + 1, n− 1)

for r ∈ [s, R]. Also, the mean conditional distances to the remaining neighbors are

E[Rn | R1 = s] =
s

(n − 1)B(N − n + 1, n − 1)
F1

(

n − 1; n− N,−1

d
; n − 1; 1, 1 − Rd

sd

)

.

Fig. 2.7 plots the mean conditional distances in a network with 10 nodes when the

nearest-neighbor distance is unity.

2.5.4 Interference

In order to accurately determine network parameters such as outage, throughput or

transmission capacity, the interference in the system I needs to be known.

Let Tn ∈ {0, 1}, 1 ≤ n ≤ N denote the random variable representing whether the

nth nearest node to the BS transmits or not, in a particular time slot. With the channel

access scheme being ALOHA, these are i.i.d. Bernoulli variables (with parameter δ).

The mean interference as seen at the center of the network is given by

µI = E

[

N
∑

n=1

(TnR−α
n )

]

=

N
∑

n=1

E[Tn]E
[

R−α
n

]

,

= δ

N
∑

n=1

E
[

R−α
n

]

.

Setting γ = −α and n = 1 in (2.11), we can conclude that the mean interference is

infinite for d ≤ α. This is due to the nearest interferer. Even the mean interference from

(just) the nth nearest transmitter is infinite if α ≥ nd. When the number of dimensions

10Mathematica: AppellF1[a, b1, b2, c, x, y].
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Figure 2.7. The mean conditional distances of the higher-order neighbors in a binomial
network with 10 nodes and d = 1, 2, 3, when it is known that the nearest neighbor is at
unit distance away from the base station.

is greater than the PLE, we have

µI =
δR−αΓ(N + 1)

Γ(N + 1 − α/d)

N
∑

n=1

Γ(n − α/d)

Γ(n)
.

One can inductively verify that

k
∑

n=1

Γ(n − α/d)

Γ(n)
=

Γ(k − α/d)

Γ(k)

k − α/d

1 − α/d
∀k ∈ Z, (2.18)

and we obtain after some simplifications,

µI =
NδdR−α

d − α
, d > α. (2.19)

The unboundedness of the mean interference at practical values of d and α (i.e., d < α)

actually occurs due to the fact that the path loss model we employ breaks down for very

small distances, i.e., it exhibits a singularity at x = 0. One way to overcome this issue is

to impose a guard zone of radius ǫ around every receiver. In other words, every receiver

has an exclusion zone of radius ǫ around it and the nodes lying within it are not allowed

to transmit.
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Since the average number of nodes in the ball b(o, ǫ) is Nǫd/Rd, we obtain the mean

interference in this case to be

µI =
NpdR−α

d − α
− Nǫdδdǫ−α

Rd(d − α)

=
Nδd(Rd−α − ǫd−α)

Rd(d − α)
, ∀d 6= α. (2.20)

Taking limits, we obtain µI = Nδd ln(R/ǫ)/Rd when d = α.

Alternatively, authors have used different path loss model laws such as min{1, ‖x‖−α},

1 + ‖x‖−α or exp(−‖x‖) to keep the interference term bounded in their analyses.

2.5.5 Outage Probability and Connectivity

Assuming that the system is interference-limited, an outage O is defined to occur if

the SIR at the BS is lower than a certain threshold Θ. Let the desired transmitter be

located at unit distance from the origin, transmit at unit power and also not be a part

of the original point process. Then, the outage probability is Pr(O) = Pr[1/I < Θ].

Considering only the interference contribution from the nearest neighbor to the origin,

a simple lower bound is established on the outage probability as

Pr(O) ≥ Pr
(

T1R
−α
1 > 1/Θ

)

= δ Pr
(

R1 < Θ1/α
)

=











δ

(

1 −
(

1 − Θd/α

Rd

)N
)

Θ ≤ Rα

δ Θ > Rα.

(2.21)

The empirical values of success probabilities and their upper bounds (2.21) are plotted

for different values of N in Fig. 2.8. As the plot depicts, the bounds are tight for lower

values of N and Θ, and therefore we conclude that the nearest neighbor contributes

most of the network interference. However, as α decreases, the bound gets looser since

the contributions from the farther neighbors are (also) increased.

Next we study the connectivity properties of the binomial network, assuming that

interference can be controlled such that the system is noise-limited. Define a node to

be connected to the origin if the SNR at the BS is greater than a threshold Θ. Let

the nodes transmit at unit power and assume noise to be AWGN with variance N0. In

the absence of interference, the probability that the BS is connected to its nth nearest
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Figure 2.8. Comparison of exact success probabilities versus their upper bounds for
different values of the system parameters.

neighbor is

Pr(R−α
n > N0Θ) = 1 − Pr(Rn > (N0Θ)−1/α)

=











1 − I1−p′(N − n + 1, n) Θ > R−α/N0

1 Θ ≤ R−α/N0,
(2.22)

where p′ =
(

(N0Θ)
−1/α

/R
)d

. Fig. 2.9 plots the connection probability in a two-

dimensional binomial network with 25 nodes.

The mean number of nodes that are connected to the BS is N min{1,
(

(N0Θ)−1/α

R

)d

}.

2.5.6 Other Applications

We now list a few other areas where knowledge of the distance distributions is useful.

• Routing: The question of whether to route over smaller or longer hops is an impor-

tant, yet a nontrivial issue [21, 22], and it gets more complicated in the presence

of interference in the network. The knowledge of internodal distances is necessary

for evaluating the optimum hop distance and maximizing the progress of a packet

towards its destination.
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Figure 2.9. The probability of the nth nearest neighbor, n = 1, 2, . . . , 10, being connected
to the BS (2.22) for a binomial network with 25 nodes.

• Path loss exponent estimation: The issue of PLE estimation is a very impor-

tant and relevant problem [23]. Several PLE estimation algorithms are based on

received signal strength techniques, which require the knowledge of distances be-

tween nodes.

2.6 Chapter Summary

We argue that the Poisson model for nodal distributions in wireless networks is not

accurate in many practical situations and instead consider the often more realistic bino-

mial network model. We derive exact analytical expressions for the pdfs of the internodal

distances in a network where a known number of nodes are independently distributed

in a compact set. Specializing to the case of an isotropic random network, we show

that the distances between nodes follow a generalized beta distribution and express the

moments of these random variables in closed-form. We also derive the distribution of the

internodal distances for the BPP distributed on a regular polygon. Our findings have

applications in several problems relating to wireless networks such as energy consump-
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tion, design of efficient routing and localization algorithms, connectivity, interference

characterization and outage evaluation. We conclude that distance distributions are a

useful tool in analyzing single-hop characteristics of ad hoc networks.
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CHAPTER 3

TASEPS: A STATISTICAL MECHANICS TOOL TO ANALYZE THE
PERFORMANCE OF WIRELESS LINE NETWORKS

3.1 Introduction

A wireless ad hoc network is typically formed by deploying nodes that possess self-

organizing capabilities. Due to the stringent energy constraint in these devices, a natural

communication strategy to conserve battery life is to reduce the range of transmission

and employ multihop routing, where relays assist in the delivery of packets from the

source to the destination. Multihop wireless networks are not just intended to carry

small volumes of data in an energy-efficient manner, but may also be used to provide

broadband services, for example in mesh networks. However, existing buffering schemes

for multihop wireless networks involving large buffer sizes and a drop-tail policy have cer-

tain inherent drawbacks such as buffer overflows, excessive queueing delays and schedul-

ing issues resulting in uncoordinated transmissions. Consequently, the end-to-end delay

and throughput performance in such systems is disappointing [24]-[26].

The contribution of this chapter is two-fold:

First, we propose a simple buffering and channel access scheme to overcome the afore-

mentioned shortcomings. Accordingly, the buffer sizes at relay nodes are restricted to

just one packet, and all the buffering is pushed back to the source node. Also, nodes

transmit packets only if their adjacent nodes’ buffer is empty, and packets are retrans-

mitted until they are successfully received. We shall see that employing this modified

transmission policy not only keeps scheduling simple but also helps regulate the flow of

packets in a completely decentralized fashion. It maintains a certain spacing between

packets which is essential for the efficient operation of systems.

Second, we characterize the end-to-end delay and achievable throughput of the wire-

less multihop line network employing the revised buffering policy. While most prior
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work has focused only on average delays and neglected characterizing the correlations

between delays across different hops (or worked around this issue by assuming multi-

ple traffic flows), we also explicitly derive the spatial delay correlations in the network.

Additionally, we provide applications of our findings for large wireless line networks.

For our analysis, we consider two slotted channel access methods that are tractable:

randomized TDMA (r-TDMA) and slotted ALOHA. r-TDMA is a modified version of

the traditional TDMA, wherein the transmitting node in each time slot is chosen uni-

formly randomly from the set of all nodes instead of being picked in an ordered fashion.

In the ALOHA-based network, in each time slot, each node having a packet indepen-

dently transmits with a certain probability. To simplify the analysis, we exploit the

analogy between multihop wireless line networks and the discrete-time totally asymmet-

ric simple exclusion process (TASEP) [27], a stochastic process in statistical mechanics

which has also been used to analyze other interesting problems such as the kinetics

of biopolymerization and traffic. In particular, we focus on the TASEP models with

random sequential and parallel updates. In addition, we describe other TASEP types,

namely the sequential TASEP and the sub-lattice parallel TASEP which can be linked

to the classical TDMA and spatial TDMA MAC schemes, respectively. This work is

intended to enhance our understanding of the dynamics of packet transport in multihop

wireless networks.

3.2 System Model

We consider a multihop wireless line network with a unidirectional data flow from the

leftmost to the rightmost node. The source node S is numbered 0 and generates packets

of fixed length at a constant rate. The network contains N relay nodes (numbered 1

through N) and a destination D. Each node has a buffer of size K ≥ 1 packets. The

arrangement of nodes is regular (on a lattice) with a separation of l between any pair of

adjacent nodes. Time is slotted to the duration of a packet, and transmission attempts

occur at slot boundaries.

In this chapter, we consider the case where all the nodes in the network use the

same channel and assume that simultaneous transmissions cause interference between

links. We take the attenuation in the channel to be modeled according to the large-

scale path loss law with exponent γ. The noise in the network is taken to be AWGN
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with variance N0. We define the transmission from node i to node j to be successful

if the (instantaneous) signal-to-interference-and-noise ratio (SINR) at j is greater than

a predetermined threshold Θ. The probability of successful reception is denoted by

ps = Pr [SINR > Θ].

3.3 Motivation

3.3.1 Optimality of ALOHA: The Sufficiency of Small Buffers

Assume for now that at any receiver node, only the nearest interferer contributes to

the interference. Let m denote the spatial-reuse parameter, which is the minimum num-

ber of hops separating any two transmitters i and j such that both their transmissions

are successful. Indeed, if each node transmits with power P , we require

ps = 1 ⇔ Pl−γ

P (ml − l)−γ + N0
> Θ. (3.1)

It is straightforward to see that

m =

⌈

(

1

Θ
− N0

Pl−γ

)−1/γ
⌉

+ 1 (3.2)

is the spatial-reuse parameter that satisfies (3.1).

For the system model considered, the optimal throughput at steady state is equal

to 1/m; it is achieved when each mth node transmits simultaneously. Also, in this case,

the steady state end-to-end delay is minimal and equal to N +1 time slots. The optimal

scheduling of the multihop wireless network that minimizes the end-to-end delay (and

maximizes the throughput) is illustrated in Fig. 3.1, for certain values of the system

parameters. Note that this MAC scheme is equivalent to a simple slotted ALOHA

protocol (with transmit probability 1), in which every node that has a packet in its

buffer transmits.

In the above scenario, all the transmissions are successful. However, in the pres-

ence of fading, unequal spacing between the nodes, or interference from other networks,

transmissions can fail, and the slotted ALOHA scheme with contention parameter 1

may perform sub-optimally. Nevertheless, this example illustrates that for the efficient

operation of networks, it is necessary that the transmitting nodes not be too closely lo-

cated. In fact, for half-duplex nodes, m needs to be always kept ≥ 2. This example also

illustrates that since adjacent nodes cannot both transmit successfully at the same time,
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Figure 3.1. The optimal scheduling assignment (in the absence of fading) for a multihop
line network with 10 relay nodes. For the system parameters specified, m = 3. In the
steady state, there are three unique transmission phases, in each of which nodes three
hops apart transmit simultaneously. The system achieves a throughput of 1/3 and an
end-to-end delay of 11 time slots.

it is not necessary to have K > 1 as packets are never stacked; small buffers (K = 1)

are sufficient for the optimal operation of the network.

3.3.2 A Revised Transmission Policy

Motivated by the straightforward yet optimal ALOHA protocol, we propose a sim-

plified transmission policy for multihop wireless networks characterized by the following

three rules.

1. All the buffering is performed at the source node, while relay nodes are essentially

bufferless (have buffer sizes of unity).

2. Transmissions are not attempted by nodes if their adjacent node’s buffer already

contains a packet.

3. Packets are retransmitted until they are successfully received.

Rule 1 ensures that nodes have at most one packet in their buffer and is favorable

for the following reasons.

• First, for K = 1, the scheduling scheme can be made very simple and completely

decentralized: nodes that have a packet transmit and others remain idle. As in
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the case of the throughput-achieving ALOHA scheme illustrated earlier, the inter-

ference in the network induces a natural spacing between packets, and all nodes

with a packet can simultaneously transmit successfully with a high probability of

success. When multiple packets are present at nodes however, the spacing between

packets is not preserved and hence, more complicated (and perhaps, centralized)

scheduling algorithms are needed.

• Second, keeping the value of K small can prevent the average end-to-end delay

from getting excessive without the source knowing about it. Indeed, for a general

MAC scheme, several packets may get stacked-up in a buffer when K is large,

especially when the link quality is poor, and transportation of packets across links

get delayed. Moreover, since packets are backlogged over multiple relays, the

average end-to-end delay at steady state becomes huge.

Due to stacking-up of packets at buffers, the variance of the end-to-end delay

also increases with buffer size. In other words, in the single-buffer case, the delay

incurred after the packet leaves the source is much more tightly controlled than in

the multiple-buffer case. Depending on the time a packet spends at the first relay,

the source node can make a more judicious decision on whether to drop a packet

or not.

• Third, large buffers increase hardware cost and energy consumption.

However, using Rule 1 alone may lead to a loss in throughput due to dropped packets,

and Rule 2 is needed mainly to reduce interference and consequently keep the number

of failed transmissions small. In fact, Rules 1 and 2 together mean that a transmission

can occur only when a node has a packet to transmit and its target node has an empty

buffer. This is a simple, distributed way to prevent packets from getting too closely

spaced and ensure that the transmitting nodes will be at least two hops apart. A simple

way to enforce the latter rule is by having relay nodes ignore incoming request-to-send

(RTS) or send a negative clear-to-send (CTS) if their buffers are full. Rule 3 ensures

that the network is 100% reliable. Together, the rules help regulate the flow of packets

in the network in a completely distributed fashion. The revised transmission scheme

also intrinsically enforces congestion control and works similar to reactive back-pressure
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algorithms (see for example, [28]) wherein the load at each server is balanced dynamically

based on the states of upstream and downstream queues.

In this chapter, we characterize the delay and throughput performance of multihop

wireless networks, employing the aforementioned transmission scheme, for two different

MAC schemes, the r-TDMA and slotted ALOHA. For our analysis, we use some existing

results from the TASEP literature.

3.4 Related Work

3.4.1 Review of Literature

The delay and throughput performances of the classical TDMA, spatial TDMA,

ALOHA and several other MAC schemes have been extensively studied for point-to-

point links using queueing-theoretic approaches [29]-[32]. However, there is limited work

on the performance analysis of networks with multiple hops [33]-[35] since their analy-

sis is less tractable and often yields only approximate results. In order to circumvent

analytical issues, authors have considered very small [36]-[38] or infinitely large [39, 40]

networks. Additionally, previous studies have either considered unlimited buffer capac-

ities [41] or neglected queueing delays in the system [42], both of which are not realistic

assumptions. In this work, we use existing results from the TASEP literature to de-

rive exact analytical results on the throughput and delay performance of wireless line

networks with an arbitrary number of nodes. Also, since we consider relays with unit

buffers, the queueing delays at nodes are clearly zero, and we only need to consider

access and retransmission delays.

The benefits of keeping relay buffer sizes equal to unity has been studied earlier in

literature. In [43], the author considers a buffering policy similar to the one described

earlier in this chapter, and proposes several amendments to the MAC layer, such as the

notion of shadow packets to stabilize the system and achieve the optimal throughput. In

[44], the authors show that buffering and network coding implemented at the source node

can lead to comparable packet drop rates compared to buffering at every intermediate

router. In the case of large networks with multiple links, the coding-based scheme can

also provide buffer gains.
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3.4.2 A Review of TASEPs with Open Boundaries

We now provide a short review of the discrete-time one-dimensional TASEP with

open boundaries and furnish details on four commonly studied updating procedures,

namely random sequential, ordered sequential, sublattice-parallel and parallel. We also

briefly introduce the matrix product ansatz (MPA), an algebraic framework that is used

extensively later in the chapter.

The TASEP refers to a family of simple stochastic processes used to describe the

dynamics of self-driven systems with several interacting particles and is a paradigm for

non-equilibrium systems [45, 46]. The classical 1D TASEP model with open boundaries

is defined as follows. Consider a system with N + 1 sites, numbered 0 to N . Site 0

is taken to be the source that injects particles into the system. The model is said to

have open boundaries, meaning that particles are injected into the system at the left

boundary (site 1) and exit the system on the right boundary (site N). The occupancy

of site i, 1 ≤ i ≤ N is denoted by τi. At any given time, site i can either be occupied

(τi = 1) or empty (τi = 0). This form of an exclusion principle leads to interesting

dynamical properties, as we shall see later. The source node is taken to be always

occupied (τ0 ≡ 1).

In the discrete-time version of the TASEP, the movement of particles is defined to

occur in time steps. Specifically, let (τ1[t], τ2[t], . . . , τN [t]) ∈ {0, 1}N denote the config-

uration of the system at time slot t. In the subsequent time slot t + 1, one chooses a

single site or a set of sites depending on the updating procedure. For every site picked,

if it contains a particle and the neighboring site on its right has none, then the particle

hops from that site to its neighbor with a certain probability. This way, the particles

are transported from site 0 through the system until their eventual exit at site N .

The dynamics of the classical TASEP particle flow is defined as follows. Suppose

that the ith site is chosen in time slot t.

If 1 ≤ i ≤ N − 1, the particle on site i (if there is any) jumps to site i + 1 (provided it

is empty) with probability p. Accordingly,

P(τi[t + 1] = 0) = 1 − τi[t](1 − p + pτi+1[t])

P(τi[t + 1] = 1) = τi[t](1 − p + pτi+1[t]).
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and

P(τi+1[t + 1] = 0) = (1 − τi+1[t])(1 − pτi[t])

P(τi+1[t + 1] = 1) = pτi[t] + τi+1[t](1 − pτi[t]).

If i = 0, site 1 remains occupied at time t + 1 if it was occupied at time t and gets

occupied with probability α if it was empty. Thus,

P(τ1[t + 1] = 0) = (1 − α)(1 − τ1[t])

P(τ1[t + 1] = 1) = α + (1 − α)τ1[t].

If i = N , site N remains empty at t + 1 if it was empty at time t, and gets emptied with

probability β if it was occupied, i.e.,

P(τN [t + 1] = 0) = 1 − (1 − β)τN [t]

P(τN [t + 1] = 1) = (1 − β)τN [t].

A snapshot of the TASEP system model is depicted in Fig. 3.2. The particle that

jumps leaves a hole behind. Therefore, hopping of particles to the right results in the

holes moving to the left towards the source, hence the system exhibits a particle-hole

symmetry and studying only the first ⌈(N + 1)/2⌉ sites is sufficient to characterize the

system completely.

(DEST.)(SOURCE)
N10 2 3 N − 2 N − 1

α p β

Figure 3.2. Snapshot of a TASEP system model along with the hopping probabilities.
The source is numbered 0, and there are N other sites. Filled circles indicate occupied
sites and the rest indicate holes. Jumping from site i is possible only if the configuration
{τi, τi+1} is {1,0}. In the above example, hopping is not possible between sites N − 2
and N − 1.

The TASEP model is known to exhibit rich non-equilibrium behavior, even at steady

state, where the rate of particle flow between any two adjacent sites is a constant. Here,

the non-equilibrium nature of the model refers to the fact that the source and destination

nodes are never at equilibrium, i.e., data always flows from the source node to the

destination node. In this dynamical system, it is of interest to compute the steady state
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probabilities of the particle configurations, the occupancies of the sites and the rate of

particle flow [45, 46]. The values of the aforementioned quantities, however, explicitly

depend on the updating procedure, i.e., the order in which the spatio-temporal hopping,

injection and removal of particles is performed. There are four basic and commonly

considered TASEP updating procedures:

1. Random-sequential update: A site is randomly picked with a uniform probability

of 1/(N +1) at each time step. Hopping is performed based on rules defined above

with probabilities α, β and p for particles at sites i = 0, i = N and i /∈ {0, N}

respectively.

2. Sublattice-parallel update: Assume that the number of sites N is even. We first

apply injection (removal) rules to sites 0 (N) and also perform hopping on pairs

(2, 3), (4, 5), and so on. In the subsequent time step, updating rules are applied

to site pairs (1, 2), (3, 4), etc.

3. Ordered-sequential update: As the name suggests, this is a procedure where up-

dating is performed in an orderly, sequential fashion. One usually starts from

the right end of the chain and updates the particle at node N . Then, the pairs

(N − 1, N), (N − 1, N − 2), and so on are updated until the left end of the chain

(node 0) is reached. In this form of updating, a series of adjacent particles can all

be transported sequentially, unlike the previous updating schemes.

4. Parallel update: The updating rules are simultaneously applied to all the sites, and

in each time slot, all particles at sites that have an empty site to their right jump

simultaneously. This updating scheme is often used to model vehicular traffic flow

and is a special case of the well-known Nagel-Schreckenberg model [47].

It is apparent from the description of the TASEP model that it exhibits a similarity

to wireless line networks. The sites can be taken to represent the relay nodes and the

particles the packets. The exclusion principle models the unit buffer size at the relay

nodes. All the buffering in the network has to occur at the source. We assume that the

original source has a large buffer and regulates the flow of data into a TASEP source, by

sending in packets to the network only when it is chosen for transmission. The resulting

system model is depicted in Fig. 3.3.
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Figure 3.3. The system model. The wireless line network is modeled as a source node
with a large buffer connected to the TASEP particle flow model with N + 1 sites, each
with a buffer size of unity.

3.4.3 Matrix Product Ansatz

The starting point in solving for the steady state solution of the one-dimensional

TASEP model is to write down the master equation. Let PN (τ, t) denote the probability

of finding the system in the configuration τ = (τ1, τ2, . . . , τN ) in time slot t. The master

equation describes the evolution of the system with time and takes the form

∆ (PN (τ, t)) =
∑

τ ′

[

ξ(τ ′, τ)PN (τ ′, t) − ξ(τ, τ ′)PN (τ, t)
]

,

where ∆ (PN (τ, t)) = PN(τ, t + 1) − PN(τ, t), and ξ(τ, τ ′) denotes the rate of transition

from τ to τ ′. We now associate to every configuration τ a column vector |τ〉 (represented

here by the “ket” notation) defining an orthonormal basis, with 〈τ ′|τ〉 = δτ ′,τ , and define

the state of the system at time t as

|PN [t]〉 =
∑

τ

PN(τ, t)|τ〉.

For the TASEP with random sequential update, one needs to only consider inter-

actions between nearest neighbors, and it is possible write ∆|PN [t]〉 = H|PN [t]〉, where

H is the Hamiltonian that is derived based on the dynamics of the system [48]. For

the other update rules, it is more convenient to use a “transfer matrix” T and consider

|PN [t + 1]〉 = T |PN [t]〉. For further details on the master equation and its formulation,

we refer the reader to [27, 48].

The steady state limt→∞ ∆|PN (t)〉 = 0 for the random sequential TASEP is deter-

mined by the eigenstate of H that has an eigenvalue 0. Alternatively, if the transfer

matrix formulation is used, its eigenstate with eigenvalue 1 gives the steady state. Solv-

ing for the steady state is a formidable task which may be accomplished by considering
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recursion-based techniques on the system size [45, 46]. A more elegant and direct pro-

cedure however is to use a matrix product ansatz (MPA) [48], wherein the probability

of each configuration at steady state is decomposed into a product of matrices.

Consider the unnormalized probabilities of the configurations at steady state, fN (τ1, τ2, . . . , τN ),

defined as

fN (τ1, τ2, . . . , τN ) = PN (τ1, τ2, . . . , τN )ZN ,

where

ZN =
∑

τ1∈{0,1}

∑

τ2∈{0,1}

· · ·
∑

τN∈{0,1}

fN (τ1, τ2, . . . , τN )

is the partition function of the TASEP. According to the MPA, for each of the four

TASEP updating procedures, it is possible to express fN(τ1, τ2, . . . , τN ) as [27]

fN (τ1, τ2, . . . , τN ) = 〈W |
N
∏

i=1

(τiD + (1 − τi)E)|V 〉, (3.3)

where D and E are square matrices that operate on occupied and empty sites, respec-

tively, and |V 〉 and 〈W | are column and row vectors respectively (represented here by

the “ket” and “bra” notation). From (3.3), we also see that ZN = 〈W |CN |V 〉, with

C = D + E.

Evidently, the elements of the matrices and vectors depend strongly on the updating

procedure, and in general, they are infinite-dimensional [27]. Nevertheless, the MPA

provides an analytical framework for describing the asymmetric exclusion process in a

completely algebraic manner. Using this formalism, one can efficiently compute the

steady state probabilities and, consequently, determine other physical quantities such as

the moments and correlations of the site occupancies and the rate of flow of particles in

the system.

3.5 Throughput and Delay Analysis for the r-TDMA-based Line Network

In this section, we characterize the steady state throughput and delay behavior of

r-TDMA-based line networks. We also apply our results to studying the problem of

short-hop-versus long-hop-routing. Recall that in the r-TDMA scheme, the transmitting

node is chosen uniformly randomly in each time slot. Thus, observing that this scheme

is analogous to the TASEP model with random sequential update, we can apply the

results from the random sequential TASEP literature for our analysis.
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In addition to the model described in Section 3.2, we assume that each node transmits

at unit power, and that the channels are subject to Rayleigh fading. Thus, when node i

transmits, the received power at node i + 1 is exponentially distributed with mean l−γ ,

where γ is the path loss exponent. Since there is no interference in the network,

ps = Pr[SNR > Θ] = exp (−ΘN0l
γ) . (3.4)

Also, since the links are spaced equally, the success probability across any link is the

same. This is equivalent to taking α = β = p = ps in the corresponding TASEP model.

3.5.1 Steady State Probabilities

In the long time limit, the wireless network reaches a steady state where the proba-

bilities PN (τ1, τ2, . . . , τN ) of finding the system in the configurations (τ1, τ2, . . . , τN ) are

stationary (independent of t). It is proved in [48] that the matrices D, E and vectors

V, W in (3.3) are in general, infinite-dimensional1. For α = β = p = ps (which is the

case in our system model), a simple choice of matrices and vectors (assuming ps > 0) is

D =
1

ps



























1 1 0 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .

0 0 0 1 . . .

...
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...
...

. . .



























and E = DT

with

〈W | = (1, 0, 0, . . . ) and |V 〉 = (1, 0, 0, . . . )T .

Here, (·)T indicates transposition.

Using (3.3), the steady state probabilities can be computed in a straightforward

manner, in particular for small values of N . As examples, we have

f1(0) = f1(1) = 1/ps,

and

f2(0, 0) = f2(0, 1) = f2(1, 1) = 1/ps; f2(1, 0) = 2/ps.

1The only case for which the matrices are finite-dimensional (in fact, scalars) is when α + β = p.
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3.5.2 Steady State Occupancies

For any node i, its steady state occupancy is defined as the fraction of time it is

occupied at steady state i.e., P(τi = 1). In queueing-theoretic terms, the occupancy of

site i is the same as the utilization factor of the server at the ith node. Note that since τi

can take values only in {0, 1}, we can also write P(τi = 1) = Eτi and P(τi = 0) = 1−Eτi.

In a multihop line network with N relays, the steady state occupancy of site i is

Eτi,N =
∑

τ1={0,1}

∑

τ2={0,1}

· · ·
∑

τN={0,1}

τifN(τ1, τ2, . . . , τN )/ZN . (3.5)

Based on the MPA [48], this can be expressed as

Eτi,N =
〈W |Ci−1DCN−i|V 〉

〈W |CN |V 〉 , 1 ≤ i ≤ N. (3.6)

Also note that since τ0 = 1, we have Eτ0,N = 1. In the rest of the chapter, we simplify

the notation slightly wherever possible, and use Eτi to denote the occupancy of the ith

site in the system with N sites.

Using the forms of the matrices and vectors specified earlier, we see that in (3.6), both

the numerator and the denominator contain a factor of (1/ps)N . Hence, the occupancies

are independent of ps. Therefore, to compute Eτi, we can take ps = 1, and the steady

state occupancies are equivalent to those in [45, Eqn. 48], i.e.,

Eτi =
1

2
+

1

4

(2i)!

(i!)2
(N !)2

(2N + 1)!

(2N − 2i + 2)!

[(N − i + 1)!]2
(N − 2i + 1). (3.7)

The values at the end nodes are

Eτ1 =
3N

2(2N + 1)
and EτN =

N + 2

2(2N + 1)
.

Fig. 3.4 shows the occupancies Eτi for a multihop network with 10 relay nodes. Notice

the particle-hole symmetry i.e., Eτi = 1−EτN+1−i. In a system with an odd number of

relays, the middle relay has an occupancy of exactly 1/2.

Asymptotics : Taking the limit N → ∞ for fixed i in (3.7) yields

Eτi =
1

2
+

(2i)!

(i!)2
1

22i+1
, i ≪ N. (3.8)

In particular, Eτ1 = 3/4, and thus by the particle-hole symmetry, EτN = 1/4. Further-

more, for large N , the bulk of the system has an occupancy of approximately 1/2 at

steady state [45], i.e.,

Eτi ≈ 1/2 for i ≫ 1, |i − N | ≫ 1. (3.9)
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Figure 3.4. The steady state occupancy of each relay node for a r-TDMA-based multihop
network with N = 10 relays. Notice the particle-hole symmetry Eτi = 1 − EτN+1−i.

3.5.3 Steady State Throughput

At steady state, the rate of packet flow is the same over each link. The throughput

(or current) through node i is simply

T = ps
E [τi(1 − τi+1)]

N + 1
, (3.10)

because the probability that a packet successfully hops from node i to i + 1 in a time

step is psτi(1 − τi+1)/(N + 1). Using the MPA approach [48], we can write (3.10) as

T =
ps

N + 1

〈W |Ci−1DECN−i−1|V 〉
〈W |CN |V 〉 =

〈W |CN−1|V 〉
(N + 1)〈W |CN |V 〉 ,

where the second equality holds since psDE = D + E = C. Using [48, Eqn. 80], this

can be simplified to

T =
A(N)pN

s

(N + 1)A(N + 1)pN−1
s

=
ps(N + 2)

2(N + 1)(2N + 1)
, (3.11)

where A(N) = pN−1
s 〈W |CN−1|V 〉 = (2N)!

(N+1)!N ! . Note that the throughput can also be

computed using one of the two equivalent expressions, T = ps(1 − Eτ1)/(N + 1) =

psEτN/(N + 1).

We comment that instead of picking one of the N + 1 nodes randomly, if one only

chooses one of the nodes having a packet, the throughput is improved by a factor of

N + 1/(
∑N

i=0 Eτi) = 2(N + 1)/N + 2, i.e., T = ps/(2N + 1).
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The system throughput at steady state is proportional to the link reliability and

upper bounded by ps/4, but decreases with increase in the system size: T ∼ ps/(4N) for2

N ≫ 1. Intuitively, this result is understood by noting that only one node transmits in

any time slot (in other words, the channel is not spatially reused), and this transmission

is successful with probability ps/4 (since both the transmitting and receiving nodes’

buffers are each occupied independently with probability 1/2).

3.5.4 Average End-to-End Delay at Steady State

In this section, we analyze the delay experienced at each node in the network (source

and relays) and compute the average end-to-end delay for a packet at steady state.

Theorem 3.5.1. For the wireless multihop network with N relays running the r-TDMA
scheme, the delay experienced by a packet at node i follows a geometric distribution with
mean

EDi =
2(N + 1)(2N + 1)Eτi

(N + 2)ps
, 0 ≤ i ≤ N. (3.12)

Also, the average end-to-end delay is given by

EDe2e =
2N2 + 3N + 1

ps
. (3.13)

Proof: Suppose that a packet arrives at an arbitrary node i, 0 ≤ i ≤ N . The three

events that need to occur in the following order for the packet to be able to hop to node

i + 1 successfully are

(1) Node i + 1 has an empty buffer.

(2) Node i is picked for transmission.

(3) Node i’s transmission is successful.

We first compute the probability that event (1) occurs, i.e., the node i + 1’s buffer

is empty, conditioned on the fact that there is a packet present in node i’s buffer. This

will help us determine the packet at the ith node can hop or not. We have

P(τi+1 = 1|τi = 1) =
P(τi+1 = 1, τi = 1)

P(τi = 1)

(a)
=

E[τiτi+1]

Eτi

(b)
=

Eτi − T (N + 1)/ps

Eτi

= 1 − N + 2

2(2N + 1)Eτi
, (3.14)

2The notation f(n) ∼ g(n) means that the ratio f(n)/g(n) approaches 1 asymptotically (as n → ∞).
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where (a) holds because (τi, τi+1) can only take values in {(0, 0), (0, 1), (1, 0), (1, 1)} and

(b) is obtained by manipulating (3.10). Thus, we obtain

P(τi+1 = 0|τi = 1) =
N + 2

2(2N + 1)Eτi
. (3.15)

Now, once event (1) occurs, 1/(N +1) is the probability of node i being picked in the

r-TDMA scheme, and after the occurrence of event 2), event 3) occurs with probability

ps. Therefore, in any time slot, the probability p′ of the packet at i hopping is

p′ =
N + 2

2(2N + 1)Eτi
· 1

N + 1
· ps.

Thus, the delay at node i, Di follows a geometric distribution with parameter p′.

The average end-to-end delay is simply the sum of the average delays experienced at

each node in the network. �

We see that the average end-to-end delay is proportional to the mean site occupancies,

and inversely proportional to the link reliability. Also, it is interesting to note that the

product of throughput and average delay is 1 + N/2, and is independent of ps.

For large N , we immediately see from (3.13) that

EDe2e ∼
2N2

ps
. (3.16)

The average end-to-end delay grows quadratically with the number of relay nodes N .

3.5.5 End-to-End Delay for the First Packet

We now present a basic, yet useful result on the transient behavior of the r-TDMA-

based multihop network. Specifically, we determine the pdf of the end-to-end delay

experienced by the first transmitted packet. Evidently, the average end-to-end delay for

any packet is lower and upper bounded by the average end-to-end delay for the first

packet and the average steady state end-to-end delay, respectively.

Corollary 3.5.2. For the wireless multihop network with N relays running the r-TDMA
scheme, the end-to-end delay experienced by the first transmitted packet follows a nega-
tive binomial distribution with parameters N + 1 and ps/(N + 1).

Proof: When the first packet is transmitted, all the sites are empty. Equivalently,

this means that upon the arrival of the packet at any node, the adjacent node has an

empty buffer. Thus, for each i ∈ {0, 1, . . . , N}, Di is geometrically distributed with

mean (N + 1)/ps. Furthermore, since the Di’s are independent for the first transmitted
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packet, De2e is given by a negative binomial distribution with parameters N + 1 and

ps/(N + 1). �

The average end-to-end delay for the first packet is

EDf
e2e =

(N + 1)2

ps
. (3.17)

From (3.13) and (3.17), we obtain

EDe2e

EDf
e2e

=
N + 1

2N + 1
.

For large N , EDe2e ≈ 0.5EDf
e2e.

Fig. 3.5 shows the theoretical value of the average end-to-end delay at steady state

(3.13) and compares it with the average delay for the first packet (3.17) for N = 10.

The empirical value of the average end-to-end delay for the second packet is also plotted,

and it is seen to lie within the other two lines.
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Figure 3.5. The average end-to-end delay of a packet at steady state and the same for
the first transmitted packet for a r-TDMA-based multihop line network with 10 relays.
The empirical value of the average end-to-end delay for the second transmitted packet
is also shown, and as expected, it lies within the two other lines.

3.5.6 Spatial Delay Correlations

Since the packet flow in a wireless multihop network is relayed across multiple links,

the delays experienced by a packet across hops are spatially correlated3. The correlation

3We like to remark that there also exists temporal correlations in the delay, which refers to the
correlation between the delays experienced by two consecutive packets that arrived at a node. However,
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coefficient between the delay at nodes i and j is defined as

ρi,j =
E [(Di − E[Di]) (Dj − E[Dj ])]

σDiσDj

.

The study of delay correlations is important since it helps determine the variance of the

end-to-end delay.

We now present some analytical results on the spatial delay correlations at steady

state. Specifically, we compute P(Di+1 = ni+1|Di = ni), i.e., given that at steady state,

a packet stayed at node i for ni slots, what is the probability that it will stay at node

i + 1 for ni+1 slots? In the following, we derive closed-form expressions for the spatial

delay correlations in multihop systems with N = 1, 2 relays, and also present some useful

results in more general networks.

Lemma 3.5.3. For the multihop wireless network with a single relay node, D0 and D1

are independent.

Proof: For the trivial case N = 1, P(τ2 = 0) = 1 by definition, and hence, irrespec-

tive of the packet delay at node 0, the packet can hop from node 1 to the destination

(node 2) if node 1 is picked for transmission, and its transmission is successful. Thus, D1

follows a geometric distribution with parameter ps/2, and is independent of D0, which

is also geometrically distributed, but with parameter ps/4 (3.12). �

Corollary 3.5.4. In a multihop wireless network with N nodes, DN is independent of
all the other hop delays.

Proof: This is an immediate consequence of the previous lemma. Equivalently, we

can state that the delay at any node i is independent of the other delays in the network

if Di follows a geometric distribution with parameter ps/(N + 1). �

Therefore, for 0 ≤ i ≤ N − 1, we have

P(DN = nN | Di = ni) = P(DN = nN )

=

(

1 − ps

N + 1

)nN−1
ps

N + 1
.

A weaker statement is saying that DN is uncorrelated with the other delays, i.e., ∀i,

ρi,N = 0, which is confirmed later in Fig. 3.7.

For N > 1, computing the spatial delay correlations is quite a formidable task. We

now evaluate for N = 2, and the same procedure can be extended (with extra care) to

in this work, we characterize only the spatial delay correlations for a single packet.
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evaluate the delay correlations for larger N . To make our analysis less cumbersome, we

introduce the following notation.

(i) Let Er,s
i denote the event that when a packet arrives at node i, the configurations

of the adjacent two sites are (τi+1, τi+2) = (r, s), with r, s ∈ {0, 1}. Also, let er,s
i (N) =

P(Er,s
i ) = P ((τi+1, τi+2) = (r, s)|τi = 1).

Using the MPA, we have

e0,0
i (N) (a)

=

〈W |Ci−1DEECN−i−2|V 〉
〈W |CN |V 〉

(b)
=

〈W |CiECN−i−2|V 〉
ps〈W |CN |V 〉

=
〈W |CiECN−i−2|V 〉

ps〈W |CN−1|V 〉
〈W |CN−1|V 〉
〈W |CN |V 〉

(c)
= (1 − Eτi+1,N−1)

A(N)

A(N + 1)

= (1 − Eτi+1,N−1)
N + 2

2(2N + 1)
, (3.18)

where (a) is obtained using (3.3), (b) using psDE = D + E = C, and (c) using [49, Eqn.

80]. By a similar procedure, we obtain

e0,1
i (N) =

〈W |CiDCN−i−2|V 〉
ps〈W |CN−1|V 〉

〈W |CN−1|V 〉
〈W |CN |V 〉

= Eτi+1,N−1
N + 2

2(2N + 1)
, (3.19)

and

e1,0
i (N) =

〈W |Ci−1DDECN−i−2|V 〉
〈W |CN |V 〉

=
〈W |Ci−1DCN−i−1|V 〉

ps〈W |CN−1|V 〉
〈W |CN−1|V 〉
〈W |CN |V 〉

= Eτi,N−1
N + 2

2(2N + 1)
. (3.20)

Since the probabilities of the events add up to Eτi (i.e., Eτi,N ), we get

e1,1
i (N) = Eτi,N − e1,0

i (N) − e0,1
i (N) − e0,0

i (N)

= Eτi,N − (1 + Eτi,N−1)
N + 2

2(2N + 1)
. (3.21)

(ii) Also, let

gN(k, l) =











(1 − ps/(N + 1))
k

(ps/(N + 1))
l

l, k ≥ 0

0 otherwise,
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which has the following interesting property:

n
∏

i=1

gN(ki, li) = gN

(

n
∑

i=1

ki,
n
∑

i=1

li

)

if ∀i, ki, li ≥ 0. (3.22)

Theorem 3.5.5. For a multihop wireless network with N = 2 relays, we have

P(D1 = n1 | D0 = n0) = g2(n1 − 1, 1) − 1

5

(

1 − 2ps

3

)

[

g2(n0 + n1 − 3, 1) +

2(n0 − 1)
g2(n0 + n1 − 4, 2)

1 − g2(n0 − 1, 0)
+ (n0 − 2)

g2(n0 + n1 − 5, 2)

1 − g2(n0 − 2, 0)

]

. (3.23)

Proof: When the packet under consideration arrives at node 0, let (τ ′
1, τ

′
2) de-

note the configuration of the sites 1 and 2. For N = 2, we have from (3.18)-(3.21),

e0,0
0 (2) = 1/5, e0,1

0 (2) = 1/5, e1,0
0 (2) = 2/5 and e1,1

0 (2) = 1/5. For the sake of notational

convenience, let pr,s(n0) = P(D1 = n1|D0 = n0, (τ ′
1, τ

′
2) = (r, s)).

Case 1: (τ ′
1, τ

′
2) = (0, 0).

In this case, D1 is independent of D0. Thus,

p0,0(n0) = g(n1 − 1, 1). (3.24)

Case 2: (τ ′
1, τ

′
2) = (0, 1).

(i) If the delay experienced by the packet present at node 2 is smaller than n0, node 2’s

buffer will be empty when the packet under consideration arrives at node 1, and thus,

D1 is again independent of D0. This event occurs with probability

n0−2
∑

k=0

(ps

3

)(

1 − ps

3

)k

= 1 −
(

1 − ps

3

)n0−1

= 1 − g(n0 − 1, 0).

(ii) Thus, with probability g(n0−1, 0), the packet at node 2 remains there for more than

n0 slots. In this case, P(D1 = n1) is the probability that two successful transmissions

(first of the packet at node 2 to the destination, and then of the packet at node 1 to

(the then empty) node 2) occur in exactly n1 ≥ 2 slots, and is equal to

(

1 − ps

3

)n1−2 (ps

3

)2

= g(n1 − 2, 2).

Putting together the cases (i) and (ii), we have

p0,1(n0) = (1 − g(n0 − 1, 0))g(n1 − 1, 1) + g(n0 − 1, 0)g(n1 − 2, 2)

= g(n1 − 1, 1) − g(n0 + n1 − 2, 1) + g(n0 + n1 − 3, 2)

= g(n1 − 1, 1) − g(n0 + n1 − 3, 1)(1 − 2ps/3). (3.25)
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Case 3: (τ ′
1, τ

′
2) = (1, 0).

Since D0 = n0, the packet at node 1 has to hop to node 2 in 1 ≤ l ≤ n0 − 1 time slots.

After this happens, this case is equivalent to case 2, with n0 replaced by n0 − l. Thus,

we have

p1,0(n0) =

∑n0−1
l=1

(

1 − ps

3

)l−1 ps

3 p0,1(n0 − l)
∑n0−1

l=1

(

1 − ps

3

)l−1 ps

3

=

∑n0−1
l=1 g(l − 1, 1)p0,1(n0 − l)

1 − g(n0 − 1, 0)

= g(n1 − 1, 1) −
(n0 − 1)(1 − 2ps/3)g(n0 + n1 − 4, 2)

1 − g(n0 − 1, 0)
. (3.26)

Case 4: (τ ′
1, τ

′
2) = (1, 1).

Since D0 = n0, we require two successful transmissions (of the packets at nodes 2 and

1 to the destination and node 2 respectively) to occur in 2 ≤ l ≤ n0 − 1 slots. After

this happens, this scenario is equivalent to case 2, with n0 replaced by n0 − l. Thus, we

obtain

p(1,1)(n0) =

∑n0−1
l=2

(

1 − ps

3

)l−2 (ps

3

)2
p0,1(n0 − l)

∑n0−1
l=2

(

1 − ps

3

)l−2 (ps

3

)2

=

∑n0−1
l=2 g(l − 2, 1)p0,1(n0 − l)

1 − g(n0 − 2, 0)

= g(n1 − 1, 1) −
(n0 − 2)(1 − 2ps/3)g(n0 + n1 − 5, 2)

1 − g(n0 − 2, 0)
. (3.27)

Now, note that for case 1, P(D1 = n1 | D0 = n0) is non-zero for any values of n0

and n1, i.e., when n0 + n1 ≥ 2 (since by assumption n0 ≥ 1, n1 ≥ 1). Likewise, it can

be seen that for cases 2, 3 and 4, P(D1 = n1 | D0 = n0) > 0 only when n0 + n1 ≥ 3,

n0 + n1 ≥ 4 and n0 + n1 ≥ 5 respectively. Putting this together with (3.24) - (3.27), we

can write

P(D1 = n1 | D0 = n0) =

∑

r,s∈{0,1}

er,s
0 (2)pr,s(n0)1n0+n1≥c

P(τ0 = 1)
,

where c = 2r + s+ 2. In the general case (n0 +n1 ≥ 5), the above equation is equivalent

to (3.23). The factor 1/P(τ0 = 1) (which is equal to 1) is required since the entire

analysis is conditioned on the event that a packet is present at node 0. �

Fig. 3.6 plots P(D1 = n1|D0 = n0)/P(D1 = n1) for different values of n0 and n1 for a
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network with 2 relays when ps = 0.8. The delay correlation E[D0D1] can be numerically

evaluated using (3.23) along with (3.12).
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Figure 3.6. P(D1 = n1|D0 = n0)/P(D1 = n1) for different n0 and n1 for a multihop
network with 2 relays.

Corollary 3.5.6. For a multihop wireless network with N relays, we have

P(DN−1 = nN−1 | DN−2 = nN−2) = (EτN−2)−1

[

gN(nN−1 − 1, 1) −
(

1 − 2ps

3

)

(

e0,1
N−2(N)g2(n0 + nN−1 − 3, 1) + e1,0

N−2(N)(nN−2 − 1)
gN(nN−2 + nN−1 − 4, 2)

1 − gN (nN−2 − 1, 0)
+

e1,1
N−2(N)(nN−2 − 2)

gN(nN−2 + nN−1 − 5, 2)

1 − gN (nN−2 − 2, 0)

)]

. (3.28)

Proof: This is just a generalization of Theorem 3.5.5. �

Evaluating the delay correlations for general N or across farther nodes can be ob-

tained by essentially following the same procedure, but gets computationally intensive

and unwieldy. So, we resort to simulation. Fig. 3.7 plots the empirical values of delay

correlations across one-, two- and three-hop neighbors in the r-TDMA-based wireless

network with 10 relays and ps = 0.8. First, observe that all the delay correlations are

non-positive. This can be explained by noting that if the transmission of a packet is

delayed at any node, the adjacent nodes’ buffers get emptied so that the packet traverses

faster across them. Likewise, if the waiting time of a packet at any particular node is

small, the neighboring relay node buffers are still occupied and therefore it takes longer
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for the packet to get transported across the system. Second, delays across hops closer to

the destination and delays across father nodes are relatively lightly correlated. In fact,

∀i, ρi,N = 0. Therefore, much of the delay variance is actually contributed to only by

the first few nodes near the source node.
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Figure 3.7. The correlation coefficients ρi,i+1, ρi,i+2 and ρi,i+3 for ps = 0.8 in a multihop
r-TDMA-based system with N = 10 relays. The delay correlations across nodes farther
apart and closer to the destination are seen to be relatively light.

3.5.7 The Short-hop versus Long-hop Problem

We now present a simple application of the results derived so far: the short-hop

versus long-hop problem in large regular wireless networks running the r-TDMA proto-

col. Specifically, we determine whether it is beneficial to route over many short hops or

a smaller number of longer hops. The metrics we use for comparison are the average

end-to-end delay and throughput.

Instead of considering all the N nodes in the network, let us suppose that commu-

nication occurs only between nodes that are m hops apart. Manipulating (3.4), it is

straightforward to see that

ps = exp (−ΘN0(ml)γ) .

We now determine the optimum spacing between the communicating hops, mopt, that

minimizes the average end-to-end delay. For the system with N/m relays (assuming that
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N is a multiple of m), we have

EDe2e ∼ 2(N/m)2

ps
= 2N2 exp (ΘN0(ml)γ) /m2, (3.29)

Upon differentiating (3.29), we obtain

mopt =

(

2

ΘN0lγγ

)1/γ

, (3.30)

and is independent of N .

Fig. 3.8 plots the average end-to-end delay for different values of the SNR threshold

for a system of length N = 1000 when l = 1. For each value of the threshold Θ,

observe that there is an optimum value of m that minimizes the average end-to-end

delay. The value of mopt (from (3.30)) for several values of γ and Θ is plotted in Fig.

3.9. Depending on the threshold value, routing needs to be performed over longer or

shorter hops in order to keep the packet delay minimal.
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Figure 3.8. The average end-to-end delay versus the parameter m for different values of
threshold.

Likewise, let m′
opt denote the optimum value of the spacing between hops for which

the network throughput is maximized. We can express the throughput for the N/m-relay

system as

T ∼ ps

4N/m
= m exp (−ΘN0(ml)γ) /4N (3.31)
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which is maximized at

m′
opt =

(

1

ΘN0lγγ

)1/γ

. (3.32)

We see that mopt/m′
opt = 21/γ . The values of m′

opt are also depicted in Fig. 3.9.

3.6 Throughput and Delay for the Slotted ALOHA-based Line Network

In this section, we analyze the delay and throughput performance of slotted ALOHA-

based wireless line networks with unit buffers at steady state. First, we consider the

TASEP particle model with the parallel update and review some useful results. We

then analytically compute the throughput and end-to-end delay for the TASEP system

at steady state. Later, we consider a slotted ALOHA-based wireless large line network,

analogize it to the particle model, and present another interesting application of the

TASEP results.

3.6.1 Matrix and Vector Representation

Consider the TASEP particle flow model with the parallel update, and take the

hopping probability to be equal to p at all the sites, i.e., assume α = β = p. In this

section, we provide explicit representations of the matrices D and E and vectors V

and W (see (3.3)) that help completely determine the probabilities of the steady state
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configurations. When α = β = p (with p > 0), we have4

D =







D1 0

D2 0






, E =







E1 E2

0 0






,

〈W | = (〈W1|, 〈W2|) , |V 〉 = (|V1〉, |V2〉)T ,

where

D1 =



















1 − p
√

1 − p 0 . . .

0 1 − p
√

1 − p . . .

0 0 1 − p . . .

...
...

...
. . .



















, E1 = DT
1 ,

〈W1| = (1, 0, 0, . . . ) , |V1〉 = (1, 0, 0, . . . )T ,

and

E2 = gD1, D2 = gE1, 〈W2| = g〈W1|, |V2〉 = g|V1〉,

where g =
√

p/(1 − p).

Interestingly, in the limit p → 0, the forms of the matrices for the parallel TASEP

are identical to those obtained for the random sequential case (see Section 3.5.1), with

ps = 1. This can be intuitively understood by noting that by sufficiently reducing p, we

can ensure that at most one transmission is successful. This way, we are emulating the

TASEP model with random sequential update.

3.6.2 Buffer Occupancies

The average steady state occupancies are given by [49, Eqn. 10.16]

Eτi =
(1 − p)

∑N−i
n=0 B(N − n)B(n) + pB(N)

B(N + 1) + pB(N)
, (3.33)

where B(0) = 1, and

B(k) =

k−1
∑

t=0

1

k

(

k

t

)(

k

t + 1

)

(1 − p)t, k > 0.

The steady state occupancies depend nontrivially on p and are depicted in Fig. 3.10.

Also, due to the particle-hole symmetry, we have Eτ⌈(N+1)/2⌉ = Eτ⌊(N+1)/2⌋. For the

case p = 1, the steady state configuration consists of alternating ones and zeros, and the

occupancy of each relay node is exactly 1/2.

4In general, the matrices are infinite-dimensional, unless p = 1 or (1 − α)(1 − β) = 1 − p [49].
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Figure 3.10. The occupancies for the parallel TASEP-based particle flow model for
different values of p. Unlike the r-TDMA case, Eτi critically depends on p. As p → 0,
the buffer occupancies approach those for the r-TDMA case.

Asymptotics: For large N , the steady state occupancy in the bulk is equal to 1/2

[49], i.e., Eτi ≈ 1/2 for i ≫ 1 and |i − N | ≫ 1. Also, Eτ1 = (2p − 1 +
√

1 − p)/2p and

EτN = (1 −√
1 − p)/2p.

3.6.3 Steady State Throughput

At steady state, the throughput (or current) through site i is simply

T = pE [τi(1 − τi+1)] ,

because the probability that a particle successfully hops from node i to i + 1 in a time

step is pτi(1 − τi+1). At steady state, the rate of particle flow through each site is the

same, and the throughput of the TASEP particle flow system is

T = pEτN =
pB(N)

B(N + 1) + pB(N)
. (3.34)

For large N , the throughput at steady state T ∼ (1 −√
1 − p)/2 [49].

3.6.4 Steady State Delay

Theorem 3.6.1. The delay Di experienced by a particle at node i follows a geometric
distribution, with mean

EDi = Eτi/(pEτN ), 0 ≤ i ≤ N. (3.35)
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Proof: Following the procedure described in 3.5.4, we can write the probability

that the packet arriving at node i hops successfully to node i + 1 in a time slot as

p′ = P(τi+1 = 0|τi = 1) · p

= (1 − P(τi+1 = 1|τi = 1)) · p

=

(

1 − P(τi+1 = 1, τi = 1)

P(τi = 1)

)

· p

(a)
=

(

1 − Eτi − T/p

Eτi

)

· p = T/Eτi

(b)
= pEτN/Eτi, (3.36)

which is the same as (3.35). Here, (a) holds since T = p(Eτi −E[τiτi+1]), and (b) is from

(3.34). �

Consequently, the average end-to-end delay at steady state is obtained as

EDe2e =
1

pEτN

N
∑

i=1

Eτi =
2N + 1

2pEτN
, (3.37)

For large N , EDe2e ∼ (2N + 1)/(1 −√
1 − p).

Fig. 3.11 plots the mean end-to-end delay and throughput for a multihop line network

with 10 relay nodes, running the slotted ALOHA protocol. As expected, the delays are

much smaller than those observed in the r-TDMA-based line network (see Fig. 3.5).

Also, as expected, p = 1 is the optimum value of the hopping probability for which the

end-to-end delay is minimized, and the throughput is the highest. For this case, every

second node transmits successfully in each time slot; the throughput is exactly equal to

1/2, and the delay at each hope is equal to 1 time slot.

3.6.5 Spatial Delay Correlations

The delay correlations in the parallel TASEP-based system are harder to compute

because of the stronger correlation between the site occupancies, thus, we only provide

simulation results. Fig. 3.12 plots the empirical spatial correlations between the delays

across different sites one hop, two hops and three hops apart in a 10-site system when

p = 0.8. We again observe that the delay correlations are all negative and the correlations

between the nearest sites close to the source contribute most to the spatial correlation.

Also, note that the correlation curves are quite similar in shape to those for the r-TDMA-

based wireless network (see Fig. 3.7).
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Figure 3.11. The average end-to-end delay and throughput for a parallel TASEP-based
particle flow model with N = 10.

3.6.6 Optimizing the Contention Probability in Large ALOHA-based Line Networks

In this subsection, we analyze the throughput and average end-to-end delay of large

ALOHA-based wireless networks (employing the modified transmission scheme) using

results from the parallel TASEP. We also determine the optimum contention parameter

for which the average delay across an arbitrary link is minimized.

We consider the line network model described in Section 3.2, and additionally as-

sume that each node transmits at unit power, and that the channels are subject to

Rayleigh fading. Let γ denote the path loss exponent. Also, let q denote the contention

probability, i.e., in each time slot, nodes having a packet independently transmit with

probability q or stay idle with probability 1− q. Note the behavior of the delay across a

link versus q. For small q, nodes hold on to packets for a long time before transmitting

them which results in a long delay. Likewise, for large q, the interference in the network

is high and the delay is large. An interesting question is to compute the optimum q that

minimizes the delay experienced by the packet across the link.

For analytical tractability, we employ the mean-field assumption [45], which is an

approximation often used in statistical mechanics. Accordingly, the occupancies of the

nodes are assumed to be uncorrelated i.e., ∀i, j, E[τiτj ] = EτiEτj . The mean-field as-
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Figure 3.12. The empirical values of the correlation coefficients ρi,i+1, ρi,i+2 and ρi,i+3

for the TASEP model with parallel update. Here, N = 10 and p = 0.8.

sumption is tight at lower p [49], and may be justified by considering high Θ or large

interference from adjacent networks. Indeed, for adjacent nodes i and i + 1, we have

P(τi = 1, τi+1 = 1) = E[τiτi+1] = Eτi − T/p.

∼ 1/2 − (1 −
√

1 − p)/2p.

Now, when p is small,
√

1 − p ≈ 1 − p/2; therefore P(τi = 1, τi+1 = 1) ≈ 1/4 ≈ P(τi =

1)P(τi+1 = 1), and the occupancies of nodes i and i + 1 are independent of each other

(and hence, uncorrelated).

We assume that the system is interference-limited and thus a transmission across

any link is successful is the SIR at the receiver is greater than a threshold Θ. Now, since

each node is independently occupied with probability 1/2, we can equivalently take the

ALOHA contention parameter to be q/2. For the system model considered, the success

probability is well-approximated by [50]

p ≈ exp(−qc), (3.38)

where c =
(

πΘ1/γ
/√

γ/2 − 1
)/

2.

Now, suppose that a packet arrives at an arbitrary node i (with i ≫ 1 and |i−N | ≫

1). It follows that the probability of a successful packet hop from node i to i + 1 is

≈ qp/2, because P(τi+1 = 0|τi = 1) = P(τi+1 = 0) ≈ 1/2 and the probability of node i
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transmitting the packet is q. Consequently, the average delay of the packet across the

link i → i + 1 is

EDi = 2/(qp)

≈ 2 exp (qc)) /q. (3.39)

Differentiating (3.39), the optimum value of the contention parameter that minimizes

the average delay across the link is obtained as

qopt = min{1, 1/c}. (3.40)

Fig. 3.13 plots qopt versus threshold Θ, for different path loss exponent values.
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Figure 3.13. The optimum value of the contention parameter q (that minimizes the
delay across a link of length l) versus the SINR threshold Θ for different values of γ in
a large regular wireless network.

3.7 Chapter Summary and Concluding Remarks

We consider a wireless line network, where data is routed from the source to the

destination in a multihop fashion. We propose a modified transmission policy that helps

regulate the flow of packets in a completely decentralized manner. Using some known

results from statistical mechanics, we characterize the end-to-end delay and throughput

performances of multihop line networks running the r-TDMA and slotted ALOHA MAC
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schemes. We extend the results derived to large networks and provide applications to

important wireless networking problems.

The TASEP particle-flow model bridges the gap between statistical mechanics and

wireless networking. It is useful for providing closed-form expressions for the average

end-to-end delay and throughput of the multihop line network and has the advantage

of obviating the cumbersome queueing theory-based analysis. Furthermore, the results

obtained are scalable with the number of nodes and thus can provide helpful insights

into the design of wireless networks.
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CHAPTER 4

PROPOSED RESEARCH AND OPEN QUESTIONS

In this chapter, we describe the proposed research, and discuss several interesting

open questions. The basic research goals are to analytically characterize (or at least

provide upper and lower bounds to) the delay and throughput performance in a system

of networks and to design appropriate routing protocols and network architectures that

optimize the system performance. Additional objectives are to study the throughput-

delay-reliability tradeoffs and to understand the transient behavior of multihop ad hoc

networks.

These are some specific problems we would like to study:

4.1 Question 1: Routing Strategies in a System of Multihop Line Networks

We consider the problem of routing packets in a system of several multihop wireless

line networks, which is both theoretically challenging and practically significant. Also,

this framework is suitable for modeling ad hoc networks one since the aggregate flow in

an ad hoc network can always be decomposed into several multihop line network flows.

A preliminary, yet general formulation of the problem follows. We use some simplified

assumptions in order to make the problem both tractable and interesting.

• Consider an ad hoc network where nodes designated to be source nodes are de-

ployed on R
2 as a homogeneous Poisson point process (PPP) with density λs.

Additional nodes are arranged on R
2 as a homogeneous PPP with density λ− λs.

Thus, the total density of the network is λ. The PPP assumption may be justified

by claiming that nodes may be dropped from aircraft in large numbers; for mobile

ad hoc networks, it may be argued that terminals move independently from each

other.
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• Each source node decides to deliver packets to an arbitrarily chosen (destination)

node that lies within a certain distance from the source node.

• For each source-destination pair, the route of packet flow is prescribed by a routing

scheme R, which basically selects a set of (relay) nodes involved in establishing

the link1. Thus, the system can be perceived as comprising multiple multihop line

networks.

• Time is slotted to the duration of a packet. In each time slot, the network MAC

scheme M determines the set of transmitters for each of the line networks.

• We assume that nodes employ the revised transmission policy (described in Section

3.3.2). Thus, all the buffering is performed at the sources, and packets can hop

only to nodes with empty buffers. Also, each relay node maintains a buffer of size

unity for each of the line networks it is associated with.

• Links are subject to i.i.d. Rayleigh fading, and receptions are successful if the

SINR at the receiver is greater than a threshold Θ. It is assumed that each node

transmits at unit power. Then the success probability across any link x → y

(assuming the system is interference-limited) is

ps = P

(

hxyg(x − y)

IΦ\{x}(y)
> Θ

)

, (4.1)

where g(x−y) is the large scale path loss function, typically of the form g(x−y) =

‖x − y‖−γ , and hxy is an exponentially distributed random variable representing

the small-scale fading. Here, IΦ\{x} denotes the interference due to all transmitters

in the network, except the intended transmitter at x.

4.1.1 Preliminary Results

We now provide some preliminary simulation-based results on the performance of the

network that leads to some interesting questions. In particular, consider the following

simple routing and MAC schemes:

R1: nearest-neighbor routing in a sector of angle φ, i.e., the next-hop neighbor that lies

within a sector of angle ±φ/2 to the destination (see Figure 4.1).

1In general, note that a node may be a part of multiple line networks.
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M1: The r-TDMA scheme. For each line network, a node is uniformly randomly picked

for transmission in a given time slot.

D

φ i + 2i + 1

i

φ

Figure 4.1. Illustration of nearest-neighbor routing in a sector of angle φ. The packet is
routed through nodes i, i + 1 and i + 2.

Figure 4.2 plots the attained throughput of the links at the end of 10000 time slots

for different values of λs, in a network with λ = 10. Here, for the purpose of illustration,

the destination node is taken to be 5 hops away from the source. The width of the

lines represents the number of successfully transmitted packets across the link. Note

than when λs is very small, all transmissions may be simultaneously successful owing

to smaller interference in the network, and this results in a reasonable sum through-

put. With increasing λs, the number of source nodes is larger, and the throughput can

be made larger. However, when λs is very large, the interference in the network also

increases resulting in a lower throughput, which is undesirable. The natural question

to ask is: What is the optimum density of sources for which the sum throughput of

the network is maximized? Answering this question requires characterizing the success

probability across the links and then quantifying the throughput (current) in each net-

work. Along similar lines, one may ask: what is the optimal value of λs for which the

average end-to-end delay of packets is minimized?

4.1.2 Prior Work

There is a significant body of prior work related to the aforementioned questions.

For example, a problem of similar flavor is studied in [18] wherein the authors evaluate

the optimal density of transmitters in interference-limited Poisson point processes that

maximizes the expected progress of a packet. In [20], the authors examine the tradeoff
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Figure 4.2. The sum throughput of the links for different values of λs in a network
with λ = 10 at the end of 10000 time slots. The red circles denote the source nodes
while the black squares the destination nodes. The thickness of the solid (blue) lines is
proportional to the number of successful transmissions across the link. The dashed (red)
lines indicate that all packet transmissions across that link were unsuccessful. Among
these plots, λs = 0.5 seems to perform the best in terms of sum throughput.
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between increased transmission radius resulting in fewer hops to the destination, and the

effective rate lost at each node as a result of the increase in transmission range. In [51],

the authors evaluate the transmission capacity of wireless ad hoc networks, which is the

maximum spatial density of successful transmissions such that the outage probability is

lower than a specified threshold. However, even though problems of this nature are well-

studied, in prior work, authors have neglected the queueing delays in the system, and

assumed oversimplified system models in which nodes always have packets to transmit.

To the best of our knowledge, this is the first attempt at analyzing this problem while

taking into consideration the flow of packets in the network as well.

4.1.3 Pertinent Questions

Several related issues of theoretical and practical nature arise. For example:

1. For the routing and MAC schemes R1 and M1 respectively, how does one choose

the value of φ? Note that for small φ, the packet has to hop over longer distances,

while for large φ, the progress of a packet towards its destination is small.

2. The long-hop versus short-hop problem: instead of hopping over nearest neighbors,

does it benefit to hop over farther (say m) neighbors?

3. How to jointly optimize λs, φ and m in order to maximize the sum throughput

for a given R and M? As a starting point, we can consider the routing and

MAC schemes R1 and M1 respectively. For this setting, what is the scaling of

the transport capacity with the network size? How do the results change when we

consider other MAC schemes, such as slotted ALOHA or spatial TDMA?

4. Consider the issue of broadcasting with multiple sources. In this context, how fast

do messages propagate in the network? Also, what are the properties of the paths

formed (for example, what is the average number of hops traversed by a packet in

a given time? How many different paths exist between two nodes? What is the

path efficiency?)? This problem is similar in flavor to the one discussed in [52]. As

a special case, if all sources have the same message to transmit, how fast can the

system be flooded?

5. How do the results change when we consider 3 (or higher) dimensions, a different
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underlying nodal distribution (e.g., a Manhattan grid) or a more general fading

model (for example, Nakagami-m)?

4.2 Question 2: TDR Region Characterization of line networks

A more general question than the one described in the earlier section is the detailed

characterization of the throughput-delay-reliability (TDR) region of a line network. Re-

call that in the revised transmission policy (Section 3.3.2), we set the reliability of the

network to 100% by retransmitting packets whenever the reception fails. Also recall

that for the r-TDMA-based network, the throughput is ps(N + 2)/
(

2(2N2 + 3N + 1)
)

(3.11) and the average end-to-end delay is (2N2 + 3N + 1)/ps (3.13). Therefore, TDR

region is a hyperbolic curve along the unit-reliability plane, and the area above this

curve represents the achievable or feasible region.

However, when the hopping probability is low, keeping reliability at 1 requires packets

to be retransmitted several times and results in an unnecessarily large queueing delay

and consequently, a low throughput. In scenarios where reliability is not too critical,

one can instead decide to drop packets with a certain probability and this will help

maintain the throughput at a reasonably good value. In order to quantify this benefit in

throughput, it is critical to study the TDR tradeoffs and characterize the TDR region for

the multihop wireless network. Determining the TDR tradeoffs also helps determine the

error exponent of the system, which describes the rate of decrease of error as a function

of delay/blocklength.

It should be noted that this problem is very similar in flavor to the problem of

coupling the TASEP to Langmuir Kinetics (LK) (see [53, 54]). While the TASEP model

deals with the flow of particles along a lattice, the LK model deals with the adsorption

(at empty sites) and desorption (from occupied sites) kinetics of particles. The TASEP

and LK can be considered as two of the simplest paradigms which contrast equilibrium

and non-equilibrium dynamics and stationary states. Evidently, setting the absorption

rate in the LK model to zero and supplementing it by the TASEP model, the dynamics

of dropping packets in the multihop line network can be studied.

As a starting point, consider a multihop line network with N relay nodes running

the r-TDMA-based scheme. Let p denote the hopping probability, and consider the

case when p is small (p ≪ 1). Now, suppose that particles are dropped with a certain
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probability q which is independent of p, and also site-independent.

The evolution of the occupancy of site i, 0 < i < N takes the form

∆τi[t] = pτi−1[t](1 − τi[t]) − pτi[t](1 − τi+1[t]) − qτi[t], (4.2)

where ∆τi[t] = τi[t + 1] − τi[t]. Similar expressions can also be obtained for the sites at

the boundary (i = {0, N}).

When the network is large, we can neglect correlation between site occupancies and use

the mean field approximation2. Accordingly, we take E[τiτi+1] ≈ τiEτi+1. At steady

state (t → ∞), one obtains

lim
t→∞

∆Eτi(t) = 0 ⇔ pEτi−1 − pEτi−1Eτi + pEτiEτi+1 = (p + q)Eτi. (4.3)

The node occupancies Eτi can be obtained numerically by simultaneously solving N

such equations.

There has been significant work in characterizing the delay, throughput and reliability

tradeoffs in wireless networks. In [55], the authors derive the delays for the Gupta-

Kumar and Grossglauser-Tse models, and describe practical schemes to achieve the

optimal throughput-delay tradeoff. Using ideas from queueing theory, the authors in

[56] analyze the delay-reliability tradeoff in delay-bounded networks. The optimal rate-

reliability-delay tradeoff in networks with composite links has been studied in [57] based

on the Klienrock independence assumption. While the independence assumption is

approximate for networks with multiple flows, in line networks, the flows are correlated

and it is critical to characterize the tradeoffs while taking into account the routing and

MAC schemes, the link reliability and the buffer size all together.

Some related questions are:

1. Characterize the TDR region in the case when q is site-dependent? In a multihop

line network, packets are usually crowded more near the source, and the nodes

closer to the destination are less busy (See Figure 3.4). Thus, it seems more

optimal to use a q whose value is higher at nodes closer to the source, and smaller

farther away from the source.

2. Instead of dropping packets at a certain rate, a more practical approach would be

2This approximation is quite tight for large N and small p.
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to only drop packets that cannot be successfully transmitted even after a period of

time (say, T time slots). What is the TDR region for delay-bounded line networks?

3. How does q being queue-state dependent change the TDR region?

4.3 Question 3: Statistical Mechanics of CSMA-based Wireless Networks

Another interesting problem we would like to study is the statistical mechanics of

CSMA-based wireless networks. This problem was motivated by Hastings in [6]. Con-

sider a set of nodes that communicate with each other in an ad hoc fashion. The location

of the nodes can be arbitrary; however for exposition purposes, we take that the nodes

are arranged as a Manhattan grid with unit grid length. We assume the channel access

scheme to be CSMA and take the communication range of each node to be unity. Thus,

when a node senses the channel to be free, it can establish a connection with one of its

neighbors. Once a link is established (or becomes ‘active’), the nodes that established

the link can communicate data with each other bidirectionally and all other nodes in

the ranges of node the two nodes have to remain silent. Generally, a link may become

active only if none of the two nodes’ neighbors are active (see Figure. 4.3).

1

10

8

76

4

32

Figure 4.3. Illustration of CSMA-based communication in a Manhattan network. When
nodes 1 and 2 form an active link, nodes 3 and 4 or nodes 6 and 10 cannot establish
links with each other. However, nodes 7 an 8 can simultaneously communicate as well.

Now, assume that at each instant of time, each link that is inactive is activated at

unit rate. This means that the time it takes an inactive link to be activated (provided

that none of its neighbors are active) follows an exponential distribution with unit mean.

Also, suppose that once a link is formed, the time it stays active follows an exponential

distribution with rate 1/ρ (mean ρ), after which it becomes inactive. At t = 0, we assume
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Figure 4.4. The throughput across the links in a 6×6 Manhattan network. The thickness
of the lines is proportional to the time the links were active. The dashed lines indicate
those nodes between which links weren’t established. The tradeoff between ρ and sum
throughput is evident from the plots.

that there are no links present, and links get added and deleted as time progresses. Note

the following tradeoffs. The larger ρ is, links often become inactive and new links form.

Thus, the average number of active links is larger, and the throughput is increased.

However, if ρ is very large, the system will get stuck in some configuration for a long

period of time. This also prevents neighboring nodes from establishing connections, and

the throughput is reduced.

Figure 4.4 plots the average throughput across the links of the Manhattan network

for four different values of ρ, and clearly depicts the tradeoffs.

Several interesting questions arise:

1. What is the optimum ρ for which the average sum throughput across a link is

maximized? What is its value? Also, how does the optimum ρ depend on the

degree of the nodes? Note that the degree of the Manhattan network is 4.

2. Suppose node i has a packet to transmit to node j. What is the probability that it

is delivered at the end of t time slots? How long does it take before the packet visits

all the nodes? Is this question related to a random walk on integer lattices? There

also seems to exist some natural correspondences between the flow of information

in the CSMA-based Manhattan lattice and the issue of passage percolation, and

it will be interesting to explore them.

3. It will be useful to understand the relationship between the Hastings and TASEP

models.
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4.4 Other Questions

1. Most of our results for the multihop line network have been derived under the

steady state assumption, and thus only provide performance bounds. However,

it is often the case that the time scales of operation is not large enough for the

network to reach steady state. Thus, it is more important to characterize the

transient behavior of the network, and address departures from the steady state

behavior. A simple result in this direction has been to derive the delay pdf for the

first transmitted packet (see Section 3.5.5).

2. Another challenging problem is to study the delay and throughput performance for

different network topologies, such as ring networks, or tree networks. It might then

be necessary to also consider bidirectional flow of traffic and periodic boundary

conditions. Results and techniques from the ASEP or SSEP literature may be

useful in studying this problem.
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