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Introduction

A sensor network is (often) formed by scattering nodes randomly over
an area that needs to be monitored.

Distribution of nodes is ubiquitously modeled as a Poisson point
process (PPP).

Ease of analysis.
Provides useful insights.

This assumption is not practical in many cases.

Our goal : Study the more realistic “binomial network”, and
characterize the interference in such a system.
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The Poisson Network

For a PPP of intensity λ,

The number of nodes in any given set of Lebesgue measure V is
Poisson distributed with mean λV .

Pr(Φ(V) = k) = e−λV (λV)k

k!
.

The number of nodes in disjoint sets are independent of each other.
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Impracticalities of the PPP Assumption

Networks are formed by usually scattering a fixed (and finite) number
of nodes in a (finite) given area.

The point process formed is non-stationary and usually non-isotropic.

The number of nodes in disjoint sets are not independent but
governed by a multinomial distribution.
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Impracticalities of the Poisson Assumption (Contd.)
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(Left) A realization of 10 sensor nodes uniformly randomly distributed in a
circular area of unit radius. (Right) The Poisson network with the same
density (λ =3.18) has 14 nodes. The shaded box at the origin represents

the base station.
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The Binomial Point Process (BPP)

A BPP Φ
(N)

W is formed as a result of distributing N points
independently and uniformly in a compact set W ⊂ R

d.

For a Borel subset A of W, the number of points falling in A is
binomial(n,p) with parameters n = N and p = νd(A)/νd(W),
where νd(·) is the standard d-dimensional Lebesgue measure.

Conditioned on the total number of nodes in a given volume, the
PPP transforms into the BPP.

Binomial networks are those whose nodes are distributed as a BPP.
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System Model

N transmitting nodes uniformly randomly distributed in a
d-dimensional ball of radius R.

Density of the process λ = N/(cdRd), where cd = πd/2

Γ(1+d/2)
.

Each node collects data and transmits it towards a base station
positioned at origin.

MAC scheme : slotted ALOHA.

Our paper studies the interference power at the center of the network.
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Channel Model

Attenuation in the channel : modeled as a product of

Large-scale path loss decay (exponent γ).
Amplitude fading H is m-Nakagami distributed (general case).

m = 1 : Rayleigh fading; m = ∞ : constant gain.

Power fading variable : G = H2.

Moments : Assume parameter Ω

EG[Gn] =
Γ(m + n)

mnΓ(m)
Ωn.

Mean = Ω and variance = Ω2/m.

All the results obtained are for an “average network”.
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Interference Modeling

Fact : the pdf of the interference can be expressed in closed form for
a very few number of cases.

Lévy distribution.
Gaussian distribution.

Work around this issue by dealing with the moment generating
function (MGF).

Problem : characterize the interference at the origin resulting only
from the nodes in the annular region with inner radius A and outer
radius B (0 6 A < B 6 R).

Letting N → ∞ and R → ∞ while keeping λ constant, the BPP
transforms to the PPP.
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Problem Depiction
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The system model for the 2-dimensional case. The red-colored nodes
inside the shaded region are the transmitters considered.
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Interference Modeling (Contd.)

The MGF of the interference at the origin is given by

MI(s) =

(

1 −
λ

N
EG

[∫B

A

(

1 − exp
(

−sGr−γ
))

dcdrd−1dr

]

︸ ︷︷ ︸

D(s)

)N

.

D(s) can be simplified as

D(s) = cdBd
[

1 − e−sGB−γ
]

− cdAd
[

1 − e−sGA−γ
]

+ cd (sG)d/γ

Γ

(

1 −
d

γ
, sGB−γ

)

− cd (sG)d/γ
Γ

(

1 −
d

γ
, sGA−γ

)

,

where Γ(a, z) is the upper incomplete Gamma function, defined as

Γ(a, z) =

∫∞

z

exp(−t)ta−1dt.
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Cumulants of the Interference

The nth cumulant of the interference is defined as

Cn = (−1)n
dn

dsn
lnMI(s)

∣

∣

∣

s=0
.

C1 is the mean and C2 the variance.

The cumulants can be expressed recursively as

Cn = NTn −

n−1∑

i=1

(

n − 1

i − 1

)

CiTn−i,

where

Tn :=






d
Rd EG [Gn]

[

Bd−nγ−Ad−nγ

d−nγ

]

,γ 6= d
n

d
Rd EG [Gn] ln

(

B
A

)

,γ = d
n

.
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Cumulants of the Interference (Contd.)

Cumulants for a Poisson network :

Cn = λdcdEG[Gn]
Bd−nγ − Ad−nγ

d − nγ
, γ 6= d

n
.

The ratio of the nth cumulants with and without fading is

Cn|m=m

Cn|m=∞

=
(m + n − 1)!

mn(m − 1)!
.

The mean interference is independent of m.

The variance of the interference doubles for Rayleigh fading compared
to the case of no fading. †

†J. Venkataraman and M. Haenggi, “Optimizing the Throughput in Random Wireless

Ad Hoc Networks,” 42st Annual Allerton Conference on Communication, Control, and
Computing, (Monticello, IL), Oct. 2004.
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Special Cases : α-stable distribution

Poisson network of density λ (A = 0,B → ∞, 0 < d < γ)

Interference approaches stable distribution, with stability index
α = d/γ. †

The MGF is of the form

MI(s) = exp
(

−λcdEG

[

Gd/γ
]

Γ (1 − d/γ) sd/γ
)

.

The interference never converges to a Gaussian distribution.
All the moments of the interference are infinite.
α = 0.5 : “Lévy” distribution. †

PI(x) =

√

β

π
x−3/2 exp(−β/x), x > 0,

where β = (πλ2c2
dE

2
G[G1/2])/4.

†G. Samorodnitsky and M. S. Taqqu, “Stable Non-Gaussian Random Processes:

Stochastic Models with Infinite Variance,” Chapman and Hall, 1994.
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Special Cases : Gaussian distribution

Asymptotic results (N → ∞)

A > 0,B < ∞

All the moments are finite.
CLT is valid and interference approaches a Gaussian r.v.

PI(x) → N(C1, C2) =
1√

2πC2

exp(−(x − C1)
2/2C2).

A = 0,B < ∞

The interference approaches a Gaussian for d > 2γ.
For 1/2 6 γ/d < 1, the mean interference is finite while its variance is
unbounded.

A > 0,B → ∞,d < γ
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Convergence to a Gaussian

How fast does the interference converge to a Gaussian?

Kurtosis (excess) is a good parameter to characterize this.

It is a measure of the peakedness of the pdf of a real-valued random
variable.

It is defined as

κ(I) =
E
[

(I − µI)
4
]

σ4
I

− 3 =
C4

C2
2

.

Kurtosis for a Gaussian distribution = 0.
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Convergence to a Gaussian (contd.)
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Kurtosis of the interference distribution for different values of A.

Sunil Srinivasa and Martin Haenggi () University of Notre Dame WITS 2007 17 / 20



Network Outage

Assume that background noise is much smaller than the interference.

An outage O is defined to occur if the SIR is lower than a
predetermined threshold Θ.

Assume that the desired transmitter node is located at unit distance
from the origin and is transmitting at unit power.

Under Rayleigh fading, the received power is exponential with unit
mean.

The outage probability Pr(O) is

Pr(O) = EI [Pr(G/I < Θ | I)] = EI [1 − exp(−IΘ)]

= 1 − MI(Θ).

The probability of success ps is equal to MI(Θ).
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Network Outage (contd.)
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Comparison of success probabilities for Poisson and binomial networks for
different values of N under Rayleigh fading.
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Summary and Conclusion

Characterized the interference in a binomial network.

Derived a closed-form expression for the MGF and used it to calculate
the interference moments.

Studied the asymptotic convergence to a Gaussian distribution.

Using the Poisson model in analyses provides an overly optimistic
estimate of the network’s outage performance, especially when the
number of interferers is small.
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