Modeling Interference in Finite Uniformly Random Networks

Sunil Srinivasa and Martin Haenggi

Network Communications and Information Processing (NCIP) Lab Department of Electrical Engineering University of Notre Dame

Wednesday, June 20, 2007

- A sensor network is (often) formed by scattering nodes randomly over an area that needs to be monitored.
- Distribution of nodes is ubiquitously modeled as a Poisson point process (PPP).
 - Ease of analysis.
 - Provides useful insights.
- This assumption is not practical in many cases.
- **Our goal** : Study the more realistic "binomial network", and characterize the interference in such a system.

For a PPP of intensity λ ,

• The number of nodes in any given set of Lebesgue measure V is Poisson distributed with mean λV .

$$\Pr(\Phi(V) = k) = e^{-\lambda V} \frac{(\lambda V)^k}{k!}.$$

• The number of nodes in disjoint sets are independent of each other.

- Networks are formed by usually scattering a *fixed* (and *finite*) number of nodes in a (finite) given area.
- The point process formed is non-stationary and usually non-isotropic.
- The number of nodes in disjoint sets are not independent but governed by a multinomial distribution.

Impracticalities of the Poisson Assumption (Contd.)

(Left) A realization of 10 sensor nodes uniformly randomly distributed in a circular area of unit radius. (Right) The Poisson network with the same density ($\lambda = 3.18$) has 14 nodes. The shaded box at the origin represents the base station.

- A BPP Φ^(N)_W is formed as a result of distributing N points independently and uniformly in a compact set W ⊂ ℝ^d.
- For a Borel subset A of W, the number of points falling in A is binomial(n, p) with parameters n = N and $p = \nu_d(A)/\nu_d(W)$, where $\nu_d(\cdot)$ is the standard d-dimensional Lebesgue measure.
- Conditioned on the total number of nodes in a given volume, the PPP transforms into the BPP.
- Binomial networks are those whose nodes are distributed as a BPP.

- N transmitting nodes uniformly randomly distributed in a d-dimensional ball of radius R.
- Density of the process $\lambda = N/(c_d R^d)$, where $c_d = \frac{\pi^{d/2}}{\Gamma(1+d/2)}$.
- Each node collects data and transmits it towards a base station positioned at origin.
- MAC scheme : slotted ALOHA.
- Our paper studies the interference power at the center of the network.

• Attenuation in the channel : modeled as a product of

- Large-scale path loss decay (exponent γ).
- Amplitude fading H is m-Nakagami distributed (general case).
- m = 1 : Rayleigh fading; $m = \infty$: constant gain.
- Power fading variable : $G = H^2$.
- Moments : Assume parameter Ω

$$\mathbb{E}_{G}[G^{n}] = \frac{\Gamma(m+n)}{m^{n}\Gamma(m)}\Omega^{n}.$$

- Mean = Ω and variance = Ω^2/m .
- All the results obtained are for an "average network".

- Fact : the pdf of the interference can be expressed in closed form for a very few number of cases.
 - Lévy distribution.
 - Gaussian distribution.
- Work around this issue by dealing with the moment generating function (MGF).
- **Problem** : characterize the interference at the origin resulting only from the nodes in the annular region with inner radius A and outer radius B ($0 \le A < B \le R$).
- Letting $N\to\infty$ and $R\to\infty$ while keeping λ constant, the BPP transforms to the PPP.

Problem Depiction

The system model for the 2-dimensional case. The red-colored nodes inside the shaded region are the transmitters considered.

Sunil Srinivasa and Martin Haenggi

WITS 2007 10 / 20

Interference Modeling (Contd.)

• The MGF of the interference at the origin is given by

$$M_{I}(s) = \left(1 - \frac{\lambda}{N} \mathbb{E}_{G} \underbrace{\left[\int_{A}^{B} \left(1 - \exp\left(-sGr^{-\gamma}\right)\right) dc_{d} r^{d-1} dr\right]}_{D(s)}\right)^{N}$$

• D(s) can be simplified as

$$D(s) = c_{d}B^{d} \left[1 - e^{-sGB^{-\gamma}}\right] - c_{d}A^{d} \left[1 - e^{-sGA^{-\gamma}}\right] + c_{d}(sG)^{d/\gamma}$$

$$\Gamma\left(1 - \frac{d}{\gamma}, sGB^{-\gamma}\right) - c_{d}(sG)^{d/\gamma}\Gamma\left(1 - \frac{d}{\gamma}, sGA^{-\gamma}\right),$$

where $\Gamma(a, z)$ is the upper incomplete Gamma function, defined as

$$\Gamma(\mathfrak{a},z) = \int_{z}^{\infty} \exp(-t) t^{\mathfrak{a}-1} dt.$$

Cumulants of the Interference

• The n^{th} cumulant of the interference is defined as

$$C_n = (-1)^n \frac{d^n}{ds^n} \ln M_I(s) \Big|_{s=0}.$$

- C₁ is the mean and C₂ the variance.
- The cumulants can be expressed recursively as

$$C_n = NT_n - \sum_{i=1}^{n-1} {n-1 \choose i-1} C_i T_{n-i},$$

where

$$T_{n} := \begin{cases} \frac{d}{R^{d}} \mathbb{E}_{G} \left[G^{n} \right] \left[\frac{B^{d-n\gamma} - A^{d-n\gamma}}{d-n\gamma} \right] & , \gamma \neq \frac{d}{n} \\ \\ \frac{d}{R^{d}} \mathbb{E}_{G} \left[G^{n} \right] ln \left(\frac{B}{A} \right) & , \gamma = \frac{d}{n} \end{cases}$$

Cumulants of the Interference (Contd.)

• Cumulants for a Poisson network :

$$C_n = \lambda dc_d \mathbb{E}_G[G^n] \frac{B^{d-n\gamma} - A^{d-n\gamma}}{d-n\gamma}, \quad \gamma \neq \frac{d}{n}.$$

 $\bullet\,$ The ratio of the n^{th} cumulants with and without fading is

$$\frac{C_n|_{m=m}}{C_n|_{m=\infty}} = \frac{(m+n-1)!}{m^n(m-1)!}.$$

- The mean interference is independent of m.
- The variance of the interference doubles for Rayleigh fading compared to the case of no fading.[†]

[†]J. Venkataraman and M. Haenggi, "Optimizing the Throughput in Random Wireless Ad Hoc Networks," *42st Annual Allerton Conference on Communication, Control, and Computing, (Monticello, IL)*, Oct. 2004.

Sunil Srinivasa and Martin Haenggi

Special Cases : α -stable distribution

- Poisson network of density λ (A = 0, B $\rightarrow \infty, \, 0 < d < \gamma)$
 - Interference approaches stable distribution, with stability index $\alpha=d/\gamma.~^{\dagger}$
 - The MGF is of the form

$$M_{\mathrm{I}}(s) = \exp\left(-\lambda c_{\mathrm{d}} \mathbb{E}_{\mathrm{G}}\left[\mathrm{G}^{\mathrm{d}/\gamma}\right] \Gamma\left(1-\mathrm{d}/\gamma\right) s^{\mathrm{d}/\gamma}\right).$$

- The interference never converges to a Gaussian distribution.
- All the moments of the interference are infinite.
- $\alpha = 0.5$: "Lévy" distribution. [†]

$$\mathsf{P}_{\mathrm{I}}(\mathrm{x}) = \sqrt{rac{eta}{\pi}} \mathrm{x}^{-3/2} \exp(-eta/\mathrm{x}), \quad \mathrm{x} \geqslant 0,$$

where
$$\beta = (\pi \lambda^2 c_d^2 \mathbb{E}_G^2 [G^{1/2}])/4.$$

[†]G. Samorodnitsky and M. S. Taqqu, "Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance," Chapman and Hall, 1994.

Asymptotic results (N $\rightarrow \infty$)

- A > 0, $B < \infty$
 - All the moments are finite.
 - CLT is valid and interference approaches a Gaussian r.v.

$$P_{I}(x) \rightarrow \mathcal{N}(C_{1}, C_{2}) = \frac{1}{\sqrt{2\pi C_{2}}} \exp(-(x - C_{1})^{2}/2C_{2}).$$

• $A = 0, B < \infty$

- The interference approaches a Gaussian for d > 2γ.
- For $1/2 \leqslant \gamma/d < 1,$ the mean interference is finite while its variance is unbounded.

•
$$A > 0$$
, $B \to \infty$, $d < \gamma$

- How fast does the interference converge to a Gaussian?
- Kurtosis (excess) is a good parameter to characterize this.
- It is a measure of the peakedness of the pdf of a real-valued random variable.
- It is defined as

$$\kappa(I) = \frac{\mathbb{E}\left[(I-\mu_I)^4\right]}{\sigma_I^4} - 3 = \frac{C_4}{C_2^2}.$$

• Kurtosis for a Gaussian distribution = 0.

Convergence to a Gaussian (contd.)

Kurtosis of the interference distribution for different values of A.

- Assume that background noise is much smaller than the interference.
- An outage O is defined to occur if the SIR is lower than a predetermined threshold Θ.
- Assume that the desired transmitter node is located at unit distance from the origin and is transmitting at unit power.
- Under Rayleigh fading, the received power is exponential with unit mean.
- The outage probability Pr(0) is

$$\begin{split} \mathsf{Pr}(\mathbb{O}) &= & \mathbb{E}_{\mathrm{I}}\left[\mathsf{Pr}(\mathsf{G}/\mathrm{I} < \Theta \mid \mathrm{I})\right] = \mathbb{E}_{\mathrm{I}}\left[1 - \mathsf{exp}(-\mathrm{I}\Theta)\right] \\ &= & 1 - \mathsf{M}_{\mathrm{I}}(\Theta). \end{split}$$

• The probability of success p_s is equal to $M_I(\Theta)$.

Network Outage (contd.)

Comparison of success probabilities for Poisson and binomial networks for different values of N under Rayleigh fading.

Sunil Srinivasa and Martin Haenggi

University of Notre Dame

WITS 2007 19 / 20

- Characterized the interference in a binomial network.
- Derived a closed-form expression for the MGF and used it to calculate the interference moments.
- Studied the asymptotic convergence to a Gaussian distribution.
- Using the Poisson model in analyses provides an overly optimistic estimate of the network's outage performance, especially when the number of interferers is small.