# Modeling Interference in Finite Uniformly Random Networks 

## Sunil Srinivasa and Martin Haenggi

Network Communications and Information Processing (NCIP) Lab<br>Department of Electrical Engineering<br>University of Notre Dame

Wednesday, June 20, 2007

## Introduction

- A sensor network is (often) formed by scattering nodes randomly over an area that needs to be monitored.
- Distribution of nodes is ubiquitously modeled as a Poisson point process (PPP).
- Ease of analysis.
- Provides useful insights.
- This assumption is not practical in many cases.
- Our goal : Study the more realistic "binomial network", and characterize the interference in such a system.


## The Poisson Network

For a PPP of intensity $\lambda$,

- The number of nodes in any given set of Lebesgue measure V is Poisson distributed with mean $\lambda \mathrm{V}$.

$$
\operatorname{Pr}(\Phi(\mathrm{V})=\mathrm{k})=e^{-\lambda \mathrm{V}} \frac{(\lambda \mathrm{~V})^{\mathrm{k}}}{\mathrm{k}!}
$$

- The number of nodes in disjoint sets are independent of each other.


## Impracticalities of the PPP Assumption

- Networks are formed by usually scattering a fixed (and finite) number of nodes in a (finite) given area.
- The point process formed is non-stationary and usually non-isotropic.
- The number of nodes in disjoint sets are not independent but governed by a multinomial distribution.


## Impracticalities of the Poisson Assumption (Contd.)



(Left) A realization of 10 sensor nodes uniformly randomly distributed in a circular area of unit radius. (Right) The Poisson network with the same density $(\lambda=3.18)$ has 14 nodes. The shaded box at the origin represents the base station.

## The Binomial Point Process (BPP)

- A BPP $\Phi_{W}^{(N)}$ is formed as a result of distributing $N$ points independently and uniformly in a compact set $W \subset \mathbb{R}^{d}$.
- For a Borel subset $A$ of $W$, the number of points falling in $A$ is binomial $(n, p)$ with parameters $n=N$ and $p=v_{d}(A) / v_{d}(W)$, where $\nu_{\mathrm{d}}(\cdot)$ is the standard d-dimensional Lebesgue measure.
- Conditioned on the total number of nodes in a given volume, the PPP transforms into the BPP.
- Binomial networks are those whose nodes are distributed as a BPP.


## System Model

- N transmitting nodes uniformly randomly distributed in a d-dimensional ball of radius $R$.
- Density of the process $\lambda=N /\left(c_{d} R^{d}\right)$, where $c_{d}=\frac{\pi^{d / 2}}{\Gamma(1+d / 2)}$.
- Each node collects data and transmits it towards a base station positioned at origin.
- MAC scheme : slotted ALOHA.
- Our paper studies the interference power at the center of the network.


## Channel Model

- Attenuation in the channel : modeled as a product of
- Large-scale path loss decay (exponent $\gamma$ ).
- Amplitude fading H is m -Nakagami distributed (general case).
- $m=1$ : Rayleigh fading; $m=\infty$ : constant gain.
- Power fading variable: $\mathrm{G}=\mathrm{H}^{2}$.
- Moments : Assume parameter $\Omega$

$$
\mathbb{E}_{\mathrm{G}}\left[\mathrm{G}^{\mathrm{n}}\right]=\frac{\Gamma(\mathrm{m}+\mathrm{n})}{\mathrm{m}^{\mathrm{n}} \Gamma(\mathrm{~m})} \Omega^{\mathrm{n}} .
$$

- Mean $=\Omega$ and variance $=\Omega^{2} / \mathrm{m}$.
- All the results obtained are for an "average network".


## Interference Modeling

- Fact: the pdf of the interference can be expressed in closed form for a very few number of cases.
- Lévy distribution.
- Gaussian distribution.
- Work around this issue by dealing with the moment generating function (MGF).
- Problem : characterize the interference at the origin resulting only from the nodes in the annular region with inner radius $A$ and outer radius $B(0 \leqslant A<B \leqslant R)$.
- Letting $\mathrm{N} \rightarrow \infty$ and $\mathrm{R} \rightarrow \infty$ while keeping $\lambda$ constant, the BPP transforms to the PPP.


## Problem Depiction



The system model for the 2-dimensional case. The red-colored nodes inside the shaded region are the transmitters considered.

## Interference Modeling (Contd.)

- The MGF of the interference at the origin is given by

$$
M_{I}(s)=(1-\frac{\lambda}{N} \mathbb{E}_{G} \underbrace{\left[\int_{A}^{B}\left(1-\exp \left(-s G r^{-\gamma}\right)\right) d c_{d} r^{d-1} d r\right]}_{D(s)})^{N} .
$$

- $\mathrm{D}(\mathrm{s})$ can be simplified as

$$
\begin{aligned}
D(s)= & c_{d} B^{d}\left[1-e^{-s G B^{-\gamma}}\right]-c_{d} A^{d}\left[1-e^{-s G A^{-\gamma}}\right]+c_{d}(s G)^{d / \gamma} \\
& \Gamma\left(1-\frac{d}{\gamma}, s G B^{-\gamma}\right)-c_{d}(s G)^{d / \gamma} \Gamma\left(1-\frac{d}{\gamma}, s G A^{-\gamma}\right)
\end{aligned}
$$

where $\Gamma(a, z)$ is the upper incomplete Gamma function, defined as

$$
\Gamma(a, z)=\int_{z}^{\infty} \exp (-t) t^{a-1} d t
$$

## Cumulants of the Interference

- The $\mathrm{n}^{\text {th }}$ cumulant of the interference is defined as

$$
C_{n}=\left.(-1)^{n} \frac{d^{n}}{d s^{n}} \ln M_{I}(s)\right|_{s=0}
$$

- $C_{1}$ is the mean and $C_{2}$ the variance.
- The cumulants can be expressed recursively as

$$
C_{n}=N T_{n}-\sum_{i=1}^{n-1}\binom{n-1}{i-1} C_{i} T_{n-i}
$$

where

$$
\mathrm{T}_{\mathrm{n}}:= \begin{cases}\frac{\mathrm{d}}{\mathrm{R}^{\mathrm{d}}} \mathbb{E}_{\mathrm{G}}\left[\mathrm{G}^{\mathrm{n}}\right]\left[\frac{\mathrm{B}^{\mathrm{d}-\mathrm{n} \mathrm{\gamma}}-\mathrm{A}^{\mathrm{d}-\mathrm{n} \mathrm{\gamma}}}{\mathrm{~d}-\mathrm{n} \mathrm{\gamma}}\right] & , \gamma \neq \frac{\mathrm{d}}{\mathrm{n}} \\ \frac{\mathrm{~d}}{\mathrm{R}^{\mathrm{d}}} \mathbb{E}_{\mathrm{G}}\left[\mathrm{G}^{\mathrm{n}}\right] \ln \left(\frac{\mathrm{B}}{\mathrm{~A}}\right) & , \gamma=\frac{\mathrm{d}}{\mathrm{n}}\end{cases}
$$

## Cumulants of the Interference (Contd.)

- Cumulants for a Poisson network:

$$
C_{n}=\lambda d c_{d} \mathbb{E}_{G}\left[G^{n}\right] \frac{B^{d-n \gamma}-A^{d-n} \gamma}{d-n \gamma}, \quad \gamma \neq \frac{d}{n} .
$$

- The ratio of the $n^{\text {th }}$ cumulants with and without fading is

$$
\frac{\left.C_{n}\right|_{m=m}}{\left.C_{n}\right|_{m=\infty}}=\frac{(m+n-1)!}{m^{n}(m-1)!}
$$

- The mean interference is independent of $m$.
- The variance of the interference doubles for Rayleigh fading compared to the case of no fading. ${ }^{\dagger}$

[^0]
## Special Cases: $\alpha$-stable distribution

- Poisson network of density $\lambda(A=0, B \rightarrow \infty, 0<d<\gamma)$
- Interference approaches stable distribution, with stability index $\alpha=\mathrm{d} / \gamma$.
- The MGF is of the form

$$
M_{I}(s)=\exp \left(-\lambda c_{d} \mathbb{E}_{G}\left[G^{d / \gamma}\right] \Gamma(1-d / \gamma) s^{d / \gamma}\right) .
$$

- The interference never converges to a Gaussian distribution.
- All the moments of the interference are infinite.
- $\alpha=0.5$ : "Lévy" distribution. ${ }^{\dagger}$

$$
P_{I}(x)=\sqrt{\frac{\beta}{\pi}} x^{-3 / 2} \exp (-\beta / x), \quad x \geqslant 0,
$$

where $\beta=\left(\pi \lambda^{2} c_{d}^{2} \mathbb{E}_{G}^{2}\left[G^{1 / 2}\right]\right) / 4$.
${ }^{\dagger}$ G. Samorodnitsky and M. S. Taqqu, "Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance," Chapman and Hall, 1994.

## Special Cases: Gaussian distribution

Asymptotic results ( $\mathrm{N} \rightarrow \infty$ )

- $A>0, B<\infty$
- All the moments are finite.
- CLT is valid and interference approaches a Gaussian r.v.

$$
P_{I}(x) \rightarrow \mathcal{N}\left(C_{1}, C_{2}\right)=\frac{1}{\sqrt{2 \pi C_{2}}} \exp \left(-\left(x-C_{1}\right)^{2} / 2 C_{2}\right)
$$

- $A=0, B<\infty$
- The interference approaches a Gaussian for $d>2 \gamma$.
- For $1 / 2 \leqslant \gamma / \mathrm{d}<1$, the mean interference is finite while its variance is unbounded.
- $A>0, B \rightarrow \infty, d<\gamma$


## Convergence to a Gaussian

- How fast does the interference converge to a Gaussian?
- Kurtosis (excess) is a good parameter to characterize this.
- It is a measure of the peakedness of the pdf of a real-valued random variable.
- It is defined as

$$
\kappa(I)=\frac{\mathbb{E}\left[\left(I-\mu_{\mathrm{I}}\right)^{4}\right]}{\sigma_{\mathrm{I}}^{4}}-3=\frac{\mathrm{C}_{4}}{\mathrm{C}_{2}^{2}}
$$

- Kurtosis for a Gaussian distribution $=0$.


## Convergence to a Gaussian (contd.)



Kurtosis of the interference distribution for different values of $A$.

## Network Outage

- Assume that background noise is much smaller than the interference.
- An outage $\mathcal{O}$ is defined to occur if the SIR is lower than a predetermined threshold $\Theta$.
- Assume that the desired transmitter node is located at unit distance from the origin and is transmitting at unit power.
- Under Rayleigh fading, the received power is exponential with unit mean.
- The outage probability $\operatorname{Pr}(\mathcal{O})$ is

$$
\begin{aligned}
\operatorname{Pr}(O) & =\mathbb{E}_{\mathrm{I}}[\operatorname{Pr}(\mathrm{G} / \mathrm{I}<\Theta \mid \mathrm{I})]=\mathbb{E}_{\mathrm{I}}[1-\exp (-\mathrm{I} \Theta)] \\
& =1-\mathrm{M}_{\mathrm{I}}(\Theta)
\end{aligned}
$$

- The probability of success $p_{s}$ is equal to $M_{I}(\Theta)$.


## Network Outage (contd.)



Comparison of success probabilities for Poisson and binomial networks for different values of N under Rayleigh fading.

## Summary and Conclusion

- Characterized the interference in a binomial network.
- Derived a closed-form expression for the MGF and used it to calculate the interference moments.
- Studied the asymptotic convergence to a Gaussian distribution.
- Using the Poisson model in analyses provides an overly optimistic estimate of the network's outage performance, especially when the number of interferers is small.


[^0]:    ${ }^{\dagger}$ J. Venkataraman and M. Haenggi, "Optimizing the Throughput in Random Wireless Ad Hoc Networks," 42st Annual Allerton Conference on Communication, Control, and Computing, (Monticello, IL), Oct. 2004.

