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Outline

Part 1: Theory

Characterize the interference in a finite uniformly random network.

Specifically, derive the moment generating function (MGF).
Compute the interference moments.

Study asymptotic behavior of the network interference.

Extend results to an infinite Poisson network.

Part 2: Applications

Evaluation of the outage performance.

Path loss exponent (PLE) estimation.
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Interference in Wireless Networks

An wireless ad hoc or sensor network is usually formed by randomly
deployed nodes with self-organizing capabilities.

Owing to concurrent transmissions, interference is commonly
experienced in such systems.

Modeling interference is often mathematically intractable and may
not offer much insight.

Inclusion of interference in analyses is often circumvented by

Taking noise power to be much larger than the interference power.
Employing TDMA/FDMA/CDMA/SDMA.
Assuming that the interference is much lower than the signal strength.
Using successive interference cancellation.
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Uniformly Random Networks and the PPP

Prior work related to modeling interference has commonly considered
the nodal distribution to be the Poisson point process (PPP).

Analysis is tractable.
Useful insights are obtainable.

For a homogeneous PPP of intensity λ,

The number of nodes in any given set of Lebesgue measure V is
Poisson distributed with mean λV .

Pr(Φ(V) = k) = e−λV (λV)k

k!
.

The number of nodes in disjoint sets are independent of each other.
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Impracticalities of the PPP Assumption

The PPP assumption is not practical in many cases.

Networks are formed by usually scattering a fixed (and finite) number
of nodes in a (finite) given area.
The point process formed is usually non-stationary and non-isotropic.
The number of nodes in disjoint sets are not independent but governed
by a multinomial distribution.

We study the more realistic binomial network, and characterize the
interference in such a system.
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Impracticalities of the Poisson Assumption (contd.)
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(Left) A realization of 10 sensor nodes uniformly randomly distributed in a
circular area of unit radius. (Right) This particular realization of the

Poisson network with the same density (λ =3.18) has 14 nodes.
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The Binomial Point Process (BPP)

A binomial point process is formed as a result of distributing N points
independently and uniformly in a compact set W ⊂ R

d.

For a Borel subset V of W,

Pr(Φ(V) = k) =

(

n

k

)

pk(1 − p)n−k

where n = N and p = νd(V)/νd(W), and νd(·) is the standard
d-dimensional Lebesgue measure.

Binomial networks are those whose nodes are distributed as a BPP.
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Interference Characterization
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System Model

N nodes uniformly randomly distributed in a d-dimensional ball of
radius R.

Density of the process λ = N/(cdRd), where cd = πd/2

Γ(1+d/2)
.

MAC scheme: slotted ALOHA with contention probability p.

We characterize the interference power measured at the origin.
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Channel Model

Attenuation in the channel: modeled as a product of

Large-scale path loss decay (exponent γ).
Amplitude fading H which is assumed to be m-Nakagami distributed
(m > 0.5).

m = 1: Rayleigh fading; m = ∞: constant gain.

Power fading variable: G = H2.

Moments:

EG[Gn] =
Γ(m + n)

mnΓ(m)
.

Mean = 1 and variance = 1/m.

Py = gr−γPx.

All the results obtained are for an “average network”.
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Interference Modeling

Fact: the pdf of the interference can be expressed in closed form for a
small number of cases. The resulting distributions are

The Lévy distribution.
The Gaussian distribution.

Work around this issue by dealing with the MGF.

Problem: characterize the interference at the origin resulting only
from the nodes in the annular region with inner radius A and outer
radius B (0 6 A < B 6 R).

Letting N → ∞ and R → ∞ while keeping λ constant, the BPP
transforms to the PPP.
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Problem Depiction
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Interference Modeling (contd.)

The MGF of the interference at the origin is given by

MI(s) =

(

1 −
λp

N
EG

[∫B

A

(

1 − exp
(

−sGr−γ
))

dcdrd−1dr

]

︸ ︷︷ ︸

D(s)

)N

.

D(s) can be expressed as

D(s) = cdBd
[

1 − e−sGB−γ
]

− cdAd
[

1 − e−sGA−γ
]

+ cd (sG)d/γ

Γ

(

1 −
d

γ
, sGB−γ

)

− cd (sG)d/γ
Γ

(

1 −
d

γ
, sGA−γ

)

,

where Γ(a, z) is the upper incomplete Gamma function, defined as

Γ(a, z) =

∫∞

z

exp(−t)ta−1dt.
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Cumulants of the Interference

The nth cumulant of the interference is defined as

Cn = (−1)n
dn

dsn
lnMI(s)

∣

∣

∣

s=0
.

C1 is the mean and C2 the variance.

Result: The cumulants can be expressed recursively as

Cn = NTn −

n−1∑

i=1

(

n − 1

i − 1

)

CiTn−i,

where

Tn :=






dp
Rd EG [Gn]

[

Bd−nγ−Ad−nγ

d−nγ

]

,γ 6= d
n

dp
Rd EG [Gn] ln

(

B
A

)

,γ = d
n

.
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Cumulants of the Interference (contd.)

Cumulants for a homogeneous Poisson network:

Cn = λpdcdEG[Gn]
Bd−nγ − Ad−nγ

d − nγ
, γ 6= d

n
.

The ratio of the nth cumulants with and without fading is

Cn

Cn|m=∞

=
(m + n − 1)!

mn(m − 1)!
.

The mean interference is independent of m.

The variance of the interference doubles for Rayleigh fading compared
to the case of no fading. †

†J. Venkataraman and M. Haenggi, “Optimizing the Throughput in Random Wireless

Ad Hoc Networks,” 42st Annual Allerton Conference on Communication, Control, and
Computing, (Monticello, IL), Oct. 2004.
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Special Cases: The Gaussian Distribution

Asymptotic results for dense networks (N → ∞ and fixed A, B)

A > 0,B < ∞

CLT is valid and interference approaches a Gaussian r.v.

PI(x) → N(C1, C2) =
1√

2πC2

exp(−(x − C1)
2/2C2).

A = 0,B < ∞

The interference approaches a Gaussian only for d > 2γ.

A > 0,B = ∞

The interference approaches a Gaussian only for d < γ.
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Convergence to a Gaussian

How fast does the interference converge to a Gaussian?

Kurtosis (excess) is a good parameter to characterize this.

It is a measure of the peakedness of the pdf of a real-valued random
variable.

It is defined as

κ(I) =
E
[

(I − µI)
4
]

σ4
I

− 3 =
C4

C2
2

.

Kurtosis for a Gaussian distribution is normalized to 0.
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Convergence to a Gaussian (contd.)
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Special Cases: The α-stable Distribution

Poisson network of density λ (A = 0,B = ∞, 0 < d < γ)

Interference takes the form of an stable distribution, with stability
index α = d/γ. †

The MGF is of the form

MI(s) = exp
(

−λpcdEG

[

Gd/γ
]

Γ (1 − d/γ) sd/γ
)

.

The interference never converges to a Gaussian distribution.
All the moments of the interference are infinite.
α = 0.5: “Lévy” distribution. †

PI(x) =

√

β

π
x−3/2 exp(−β/x), x > 0,

where β = (πλ2p2c2
dE

2
G[G1/2])/4.

†G. Samorodnitsky and M. S. Taqqu, “Stable Non-Gaussian Random Processes:

Stochastic Models with Infinite Variance,” Chapman and Hall, 1994.
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Network Outage
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Network Outage

An outage is defined to occur if the SINR at the receiver is lower than
a predetermined threshold Θ.

We determine the outage probability for a receiver placed at the
origin.

Let the transceiver pair distance be unity and the transmit power be
unity.

Assume that noise and interference are independent.

Under Rayleigh fading, the success probability is (N0: noise power)

ps = exp(−N0Θ)MI(Θ).
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Network Outage (contd.)
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Path Loss Exponent Estimation
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Path Loss Exponent Estimation

Attenuation in the strength of the propagated signal: product of

Path loss: large-scale, deterministic.
Fading: small-scale, modeled as randomly varying.

A critical issue is to characterize the path loss exponent (PLE).

Localization.
Energy-efficient transmission.
Handoff in cellular networks.

This problem is not trivially solvable due to

Fading and interference.
Distances between nodes are also subject to uncertainty.

Sunil Srinivasa () University of Notre Dame Masters Defense 24 / 41



Path Loss Exponent Estimation (contd.)

We present three different methods to estimate the PLE for large
random wireless networks, based on

Interference moments.
Outage probabilities.
Connectivity properties.

Assumptions:

Infinite planar network where nodes are distributed as a homogeneous
PPP of density λ.

Transmitters use slotted ALOHA channel access mechanism with
contention parameter p.

Nakagami-m fading.
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Path Loss Exponent Estimation (contd.)

Estimation of the PLE γ is basically performed by matching the
empirical and theoretic values.

Caveat: in practice, we have access to only a single nodal realization
whereas in theory, results are for the “average” network.

Solution: ergodic property of the homogeneous PPP.

Statistical averages of measurable functions may be replaced by spatial
averages.

Sunil Srinivasa () University of Notre Dame Masters Defense 26 / 41



Estimation Based on the Interference Moments

Nodes need to have guard zones to ensure finite interference
moments.

With a guard zone radius of A, µI = 2πλpA2−γ

γ−2 .

For a guard zone radius of A1 = 1, record the values of the
interference powers at several nodes 1, . . . ,N.

Evaluate the empirical mean interference µ ′
I = 1/N

∑N
i=1 Ii, and

estimate γ by equating this to the theoretical value.

Alternatively, use another guard zone radius, say A2 and evaluate µ ′′
I .

γ̂ = 2 −
ln(µ ′′

I /µ ′
I)

ln(A2)
.

This “differential” method does not need estimates of p or λ.
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Estimation Based on the Interference Moments (contd.)
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Histogram of γ̂ for the estimation algorithm based on the mean
interference. The error is approximately Gaussian.
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Estimation Based on Outage Probabilities

Imposing a guard zone may not be feasible, particularly when relative
node location information is not available.

When the channel is Rayleigh-faded, the PLE can also be estimated
using outage probabilities.

Recall: when N0 ≪ I, the success probability ps is proportional to
exp(−Θ2/γ).

Using a differential method,

γ̂ =
2 ln(Θ1/Θ2)

ln(ln(p1
s)/ ln(p2

s))
.
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Estimation Based on Outage Probabilities (contd.)
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Histogram of γ̂ for the method based on outage probabilities.
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Estimation Based on Outage Probabilities (contd.)

How is the error behavior when the fading is not actually Rayleigh
(m 6= 1)?

For m ∈ N, the probability of success can be simplified to

ps =

m−1∑

k=0

exp(−c3)c
k
3

k!

(

2

γ

)k

,

where c3 = λpπEG[G2/γ]Γ(1 − 2/γ)(Θm)2/γ.
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Estimation Based on Outage Probabilities (contd.)
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Estimation Based on Outage Probabilities (contd.)
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Estimation based on the Size of the Transmitting Set

For any node, define its transmitting set as the as the set of nodes it
receives a packet from, in a given timeslot.

That is, node x is in the transmitting set of node y if the SINR at y

due to x’s signal is > Θ.

Result: Under the conditions of Rayleigh fading and N0 ≪ I, the size
of the transmitting set is Poisson distributed with parameter
N̄T = (Γ(1 + 2/γ)Γ(1 − 2/γ)Θ2/γ)−1.

This algorithm is based on matching the theoretic and practical values
of the mean cardinality of the transmitting set.

An unbiased estimate is

γ̂ =
2 ln(Θ2/Θ1)

ln(N̄1
T/N̄2

T )
.
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Estimation based on the Size of the Tx Set (contd.)
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Histogram of γ̂ for the estimation algorithm based on the cardinality of
the transmitting set.
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Estimation based on the Size of the Tx Set (contd.)

How critical is the Rayleigh fading assumption?

For m ∈ N, the size of the Tx set is Poisson with mean

N̄T =
Γ(m)

(

1 −
(

2
γ

)m)

Γ(m + 2
γ
)Γ(2 − 2

γ
)Θ2/γ

.

We surmise that N̄T is inversely proportional to Θ2/γ for all m ∈ R.

Remarkably, using the differential method, we still obtain

N̄1
T

N̄2
T

=

(

Θ2

Θ1

)2/γ

.

Performance is insensitive to m.
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Estimation based on the Size of the Tx Set (contd.)
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Comparison of the Algorithms

Success of the algorithms is critically determined by

The number of survey points.

Small N: low accuracy.
large N: expensive survey process.

The order in which nodes are chosen.

Locally as subsequent nearest neighbors (NN): correlated
measurements, slow convergence.
Randomly (R): fast convergence, but large overhead.
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Comparison of the Algorithms (contd.)
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Summary

Analytically characterized the interference in uniformly random
networks.

Derived a closed-form expression for the MGF and used it to calculate
the interference moments.

Studied the asymptotic convergence to Lévy, Gaussian distributions.

Evaluated the outage performance of the random wireless network.

Described three different algorithms for PLE estimation and provided
simulation results on the estimation errors.
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Concluding Remarks

It is important to distinguish between the Poisson network and the
binomial network. Using the Poisson model in analyses provides an
overly optimistic estimate of the network’s outage performance,
especially when the number of interferers is small and Θ is high.

The PLE estimation problem is both practically relevant and
mathematically challenging.

The PLE value changes depending on the terrain category and the
environmental conditions, and hence cannot be assumed to be a
constant over the entire network. However, our algorithms are still
useful since they can be used for obtaining local estimates.
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