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Abstract

by

Sunil Srinivasa

This thesis deals with the modeling of interference in a uniformly random wireless

network with fading. The channel access mechanism considered is slotted ALOHA,

and to obtain a fairly general set of results, the channel fading amplitude is taken

to be Nakagami-m distributed. Under these settings, we obtain a closed-form ex-

pression for the moment generating function (MGF) of the interference power. The

MGF is used to compute the interference moments, which accurately depict the

asymptotic behavior of the network interference as the number of nodes increases.

An important application of the interference characterization is the evaluation of

the system outage performance.

As another application, we study the problem of path loss exponent (PLE) es-

timation in large wireless networks, which is relevant to several important topics

in communications such as localization, energy-efficient transmission and handoff

initiation in cellular networks. We formulate three different algorithms for PLE

estimation, each based on a specific network characteristic. We also provide simu-

lation results to demonstrate the performance of the algorithms and quantify the

estimation errors.
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CHAPTER 1

INTRODUCTION

Interference: A coherent emission having a relatively narrow spectral
content, e.g., a radio emission from another transmitter at approximately
the same frequency, or having a harmonic frequency approximately the
same as another emission of interest to a given recipient, and which
impedes reception of the desired signal by the intended recipient.

- Federal Standard 1037C: Glossary of Telecommunication Terms

1.1 Interference in Wireless Networks

A wireless ad hoc or sensor network is typically formed by randomly deployed

motes that possess self-organizing capabilities [1]. Due to the stringent energy con-

straint on these devices, a natural communication strategy to conserve battery life

is to reduce the range of transmission and employ multihop routing, where relays

assist in the delivery of packets from the sources to the destinations. Owing to

transmissions across several transceiver pairs, interference is commonly experienced

in such systems. The interference can be between transmitters communicating with

a common receiver (e.g., many motes sending data to a base station or a fusion cen-

ter (uplink)), between signals from a single transmitter to multiple receivers (e.g.,

downlink), or between different transmitter-receiver pairs (e.g., interference between

many nodes communicating with several base stations). It is often argued that the

performance of wireless systems is limited by interference more than by any other

single effect.
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Despite the increasing focus on the analysis of ad hoc and sensor networks in

recent years, the effect of interference in such systems has not been studied ex-

tensively. The primary reason for this is that it is often intractable to model the

interference accurately. Particularly, in a network where nodes are distributed ran-

domly, there might not exist a closed-form expression for the distribution of the

interference. Even if the interference in the system can be explicitly specified, it

might make further analysis intractable and thus not provide much insight on im-

portant quantities such as the signal-to-interference ratio (SINR), routing energy

consumption, throughput, or end-to-end delay.

1.2 Combating Interference

Due to the above reasons, the inclusion of interference in analyses is often cir-

cumvented by assuming one of the following simplified channel models.

1) It is sometimes assumed that the noise power is much larger than the inter-

ference power, so that the SINR is equivalent to the signal-to-noise ratio (SNR). In

other words, thermal noise swamps the interference, which can thus be neglected in

analyses.

2) Interference is usually tackled by employing various multiplexing techniques,

of which the major ones are:

a) Time division multiple access (TDMA) makes use of multiple time slots. The

system is assumed to have a perfect MAC scheme that intelligently schedules the

transmissions. Each user is assigned a separate time slot during which it exclusively

uses the medium while all others wait.

b) Frequency division multiple access (FDMA) is a scheme where users share the

radio spectrum. It divides the frequency band into segments and assigns to each

user one of these sub-channels.
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c) Code division multiple access (CDMA) is a technique where users are separated

by codes. All users share all the time-frequency degrees of freedom. Users’ data are

spread (and despread) using a family of orthogonal codes.

d) Space division multiple access (SDMA) divides space to gain more channels.

Using smart antenna technology, spatial signal signatures such as the direction of

arrival (DOA) of the signal are calculated, and used to track and locate the antenna

beam on the mobile/target. With the location of the mobile user known, the radi-

ation pattern of the antenna is set to obtain the highest gain in that direction and

reduce interference to other users.

3) The interfering nodes are assumed to be far from the transceiver pair so that

the interference due to them may be neglected. Alternatively, the signal power can

be considered to be high relative to the interference or the traffic in the system may

be assumed to be light.

4) In multi-user systems, the effect of multiple-access interference is handled

by using interference cancellation techniques. These methods basically decode the

desired information and use this knowledge to subtract out interference successively

from the received signals at the other receivers. Thus, signal processing is used after

detection to reduce the influence of interference on future decisions. Though simple

and robust, this technique is decidedly suboptimal particularly when the number of

interferers is large.

1.3 Related Work

We now provide a brief overview of prior work that has dealt with interference

in wireless networks. A commonly considered system is the infinite random network

where nodes are distributed as a homogeneous Poisson point process (PPP). The

analogy between interference in such networks and stable distributions (described
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later) is observed in [2], [3]. Also, for Poisson networks, the throughput and out-

age performances are well-studied [3]-[7] under different system models and channel

parameters. [8] focuses on the medium access control of large mobile, multihop wire-

less networks and analyzes various optimization problems concerned with the spatial

density of progress of packets. [9] defines and studies the transmission capacity of

wireless ad hoc networks in the presence of interference.

There also exists a body of literature on systems with regular topologies. In [7],

the authors derive the distribution of the interference power for fading networks,

where nodes are located on a lattice. The throughput of regular networks is studied

in [10]-[12]. [13] derives some properties of interference in ad hoc networks where

nodes form a planar Poisson clustered process and provides bounds on the outage

probability and transmission capacity.

1.4 Organization and Main Contributions of the Thesis

Owing to the mathematical complexity involved, analytical results on the distri-

bution of the interference exist only for a few particular classes of networks. In this

work, we study a new type of network for which the interference in the system can

be analytically studied and expressed in a closed form. Specifically, we characterize

the interference in a finite uniformly random network where nodes contend for the

channel via the slotted ALOHA mechanism. Applications include evaluating the

network outage performance and estimating the path loss exponent of the channel,

based on the interference characteristics.

The organization of this work is as follows. The thesis is divided into two distinct,

yet related parts. The first part deals with the theory of modeling interference in

uniformly random networks and derives some important analytical results. The

subsequent part deals with applications of the first part and primarily tackles the
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problem of path loss exponent estimation in large networks. Our main contributions

are the following.

1) Though the spatial arrangement of nodes in a network is often taken to be

a PPP in analyses, this assumption is impractical particularly when the number

of nodes is small. Chapter 2 considers a new type of network that we call the

“binomial” network, where a fixed number of N nodes are uniformly randomly

distributed in a d-dimensional ball of radius R. Transmitters access the channel

via the slotted ALOHA mechanism with a certain contention probability, and to

obtain a fairly general set of results, the channel fading amplitude is taken to be

Nakagami-m distributed. In this chapter, we primarily derive some analytic results

for the interference power observed at the center of the ball. Specifically, we obtain

a closed-form expression for the moment generating function (MGF) of the inter-

ference power. This is used to compute the interference moments and to evaluate

the network outage performance. The moments provide an accurate characteriza-

tion of the asymptotic behavior of the network interference as the number of nodes

increases. By transforming the binomial network to the Poisson network, we model

the interference in the latter system.

2) The second part of the thesis (Chapter 3) addresses the problem of estimat-

ing the path loss exponent (PLE) in large wireless networks, which is relevant to

several important topics in communications such as localization, energy-efficient

transmission and handoff initiation in cellular networks. Though analyses in many

problems assume that the value of the PLE is known a priori, it is often not the

case, and an accurate estimate is crucial for the study and design of systems. In

this chapter, we study the estimation problem for a large wireless network where

nodes are distributed as a PPP on the plane. We consider the channel amplitude

to be Nakagami-m distributed and the MAC scheme to be slotted ALOHA. Under
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these settings, our work focuses on three separate algorithms for path loss exponent

estimation based on results from the prior part. Simulation results are provided to

demonstrate the performance of the algorithms and quantify the estimation errors.
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CHAPTER 2

MODELING INTERFERENCE IN UNIFORMLY RANDOM WIRELESS

NETWORKS

2.1 Introduction and Motivation

In most cases in literature, the distribution of nodes in a wireless network with

randomly scattered nodes is taken to be a homogeneous PPP, since the study of

such a system is analytically convenient and leads to some insightful results. For

the so-called “Poisson network” of intensity λ, the number of nodes Φ(V ) in any

given Borel set of Lebesgue measure V is Poisson with mean λV . Accordingly,

Pr(Φ(V ) = k) = exp(−λV )
(λV )k

k!
.

As a consequence, the number of nodes in disjoint sets are independent of each other

[14]. A homogeneous PPP is both stationary and isotropic. Even though practical

networks may be created by dropping nodes uniformly randomly, they differ from

Poisson networks in certain aspects. First, networks are usually formed by scat-

tering a fixed (and finite) number of nodes in a given area (or very close to it).

The underlying nodal distribution forms a binomial point process (BPP), which we

describe later. Secondly, the point process formed is generally non-stationary and

non-isotropic, meaning that the network characteristics as seen from a node’s per-

spective is not homogeneous for all nodes. Intuitively, nodes near the boundary are
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less susceptible to interference than the ones in the center. Furthermore, the num-

ber of nodes in disjoint sets are not independent but governed by the multinomial

distribution. Fig. 2.1 shows a realization of the two processes with the same density.

The PPP is clearly not a good model at times; there may be more points in the

realization than the number dropped. A simple scenario where the PPP assumption

is not suitable is when we have a network with a small number of nodes. Besides, the

operation of protocols may be relying on a certain number of nodes being present

in the network. This motivates the need to study and accurately characterize finite

uniformly random networks, in an attempt to extend the plethora of results for the

PPP to the often more realistic case of the BPP. We call this new model a “binomial

network”.
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Figure 2.1. (Left) A realization of 10 nodes uniformly randomly distributed in a
circular area of unit radius. (Right) A particular realization of the Poisson network
with the same density (λ =3.18) has 14 nodes. The shaded box at the origin
represents the base station.

A typical binomial network consists of several nodes transmitting to a central

base station that collects data. During communication, these nodes potentially in-
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terfere with each other. In order to accurately determine network parameters such as

outage, throughput or transmission capacity [9], the interference distribution needs

to be calculated. However, the pdf of the interference can be evaluated in closed-

form only for a very small number of cases. We work around this issue by resorting

to moment generating functions. In this thesis, the MGF of the interference at the

origin is analytically obtained and used to compute the cumulants of the interfer-

ence for a wide range of path loss exponents. The moments of the interference are

used to give a rough idea of when the interference actually converges to a Gaussian

distribution as the number of nodes in the network is increased. For cases where the

central limit theorem is valid, the kurtosis of the interference is used to determine

the rate of convergence to the Gaussian. We also show that the singularity of the

interference due to nodes close to the origin is removed by employing a modified

path loss model or having a guard zone around the receiver. Other applications of

the MGF include estimating the network outage performance.

The binomial point process: A d-dimensional BPP is formed as a result of

distributing N points independently uniformly and in a compact set W ⊂ R
d. For

a Borel subset V of W , the number of points in V is binomial(n, p) with parameters

n = N and p = νd(A)/νd(W ), where νd() is the standard d-dimensional Lebesgue

measure. Accordingly,

Pr(Φ(V ) = k) =

(
n

k

)

pk(1 − p)n−k.

The intensity of this process is defined to be N/νd(W ). Conditioned on the total

number of nodes in a given volume, the PPP transforms into the BPP [14].

2.2 System and Channel Model

There are a total of N nodes uniformly randomly distributed in a d-dimensional

ball of radius R centered at the origin, denoted as bd(0, R). The density of the

9



process is given by λ = N/(cdR
d), where cd = νd(bd(0, 1)). cd can be expressed in

terms of the gamma function as

cd =
πd/2

Γ(1 + d/2)
.

We assume that each transmitting node collects data and sends it to a base station

positioned at the origin. The channel access scheme is taken to be slotted ALOHA

with contention probability p. Fig. 2.2 depicts the system model for the two-

dimensional case. There are a total of N nodes and the ones that are transmitting

are shaded.

BS

R

Figure 2.2. The system model for the 2-dimensional case.

The attenuation in the channel is modeled as a product of a distance component

(that varies according to the large-scale path loss law with exponent γ) and a flat

block fading component. In order to accommodate a variety of cases (including

the one with no fading), the amplitude fading random variable H is assumed to be
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Nakagami-m-distributed [15]. The functional form of the Nakagami-m distribution

is

PH(h) =
2mm

Γ(m)Ωm
h2m−1 exp

(−m
Ω

h2

)

,

where the parameters Ω = E[H2] and m ≥ 1/2. The Rayleigh fading case is realized

by setting m = 1, and m→ ∞ is used to study the case of no fading. When dealing

with received signal powers, we use the power fading variable denoted by G = H2.

Without loss of generality, we take the mean of G to be Ω = 1. So, for m = 1, G is

exponentially distributed with unit mean.

An outage is defined to occur when the SINR at the base station is smaller

than a predefined threshold, Θ, which depends on the detector structure and the

modulation and coding scheme [16]. Finally, we remark that the results presented

in this work are for an “average network”, that is one obtained by averaging over

all possible realizations.

2.3 Interference Modeling

In this section, we first introduce the concept of shot noise. Using a variant of

shot noise, the interference at the origin of a network where nodes are distributed as

a BPP can be modeled. Employing this framework, we analytically derive the MGF

of the interference which is extensively needed in the later sections of this chapter

to derive the interference moments and the outage probabilities.

2.3.1 Shot Noise

The classical 1D shot noise is generated by the excitation of a memoryless, linear

filter by a train of impulses whose arrivals form a homogeneous Poisson process [17]

(see Fig. 2.3). The filter’s impulse response f(t) can assume different shapes such

as a triangle, rectangle, exponential or a decaying power law. More generally, it
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may be chosen out of a family of functions f(g, t), where the g’s are drawn from

a certain probability distribution and the arrival times t’s are Poisson with rate λ.

The shot noise amplitude is given by

I(t) =
∑

j

f(gj, t− tj). (2.1)

t

PPP

t

SHOT NOISE

t

LINEAR FILTER
h(t)

Figure 2.3. Shot Noise results from linearly filtering a PPP.

The arrival times {tj} are Poisson with rate λ and {gj} are independent iden-

tically distributed (i.i.d.) random variables and independent of tj . All impulse

functions f(g, t) are assumed to be causal and integrable over −∞ < t < ∞ so

that the series in (2.1) converges in distribution. As observed in [3], the shot noise

process can be equivalently used for modeling interference in a 1D Poisson network
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where the signal powers are decaying with distance according to a power law by

replacing the arrival times with by the node locations.

Consider a modification of the 1D shot noise where the noise is produced by the

excitation of a memoryless, linear filter by a train of impulses i = 1, . . . , N whose

arrival times ti’s are drawn from a BPP. In other words, we condition on the total

number of impulsive arrivals in shot noise (equal to N), while fixing the intensity of

the process as λ. The amplitude of the resulting process is given by

I(g, t) =
N∑

i=1

f(gi, t− ti). (2.2)

An analogy between the modified shot noise and the interference in a finite uniformly

1D random network can be drawn as follows. Consider the N interferers distributed

as a BPP on the 1D interval [0, N/λ], each transmitting at unit power to a base

station located at the origin. Let the distance between node i and the base station

be denoted by ri and the fading state on the link between node i and the base

station be gi. Then the cumulative interference at the base station is

I(g, 0) =
N∑

i=1

gi

rγ
i

. (2.3)

We see that if the impulse response of the filter in (2.2) is assumed to be the (non-

causal) decaying power law (i.e. f(g, t) = g‖t‖−γ), then the shot noise amplitude at

time 0 is the same as the interference measured at the origin.

Extension of this framework to higher dimensional networks is straightforward.

Intuitively, it can be thought of as projecting a d-dimensional process on to a 1D

process with arrival times corresponding to the transmitting nodes’ distances from

the origin. Such a mapping procedure will not preserve the intensity of the original

process, but nevertheless is a useful framework than can be employed to study the

interference in binomial networks.
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2.3.2 Stable Distributions

We now provide a short introduction to α-stable distributions, which we en-

counter in the later sections of this chapter.

Stable distributions approximate the distribution of normalizes sums of i.i.d.

random variables making them useful in modeling the contribution of many small

random effects [18]. They have been used to represent phenomena such as grav-

itational field of stars, temperature distributions in nuclear reactors, stresses in

crystalline lattices, stock market prices and annual rainfall.

The stable distribution has the important property of stability, i.e., if a number of

i.i.d. random variables have a stable distribution, then a linear combination of these

variables will have the same distribution, except for possibly different shift and scale

parameters. More formally, their definition is as follows.

Definition: A random variable X is said to have a stable distribution if it has

a domain of attraction, i.e., for any n ≥ 2, there is a sequence of i.i.d. random

variables X1, X2, . . . , Xn, a positive number Rn and a real number Sn such that

X1 +X2 + . . . +Xn
d
= RnX + Sn,

where X1, X2, . . . , Xn are independent copies of X, and “
d
= ” denotes equality in

distribution. Stable distributions owe their importance in both theory and practice

to a generalization of the central limit theorem.

A univariate stable distribution Sα(σ, β, µ) is characterized by four parameters:

the index of stability α, the scale parameter σ, the skewness parameter β and the

shift parameter µ. The skewness parameter must lie in [−1, 1], and when it is 0, the

distribution is symmetric about µ. The scale parameter can take any non-negative

real value, while 0 < α ≤ 2, and µ ∈ R. A stable distribution can be equivalently

defined via its characteristic function [18] as follows.
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Definition: A random variable Xα(σ, β, µ) is said to have a stable distribution

(otherwise known as α-stable distribution) if its characteristic function has the fol-

lowing form:

E[eiωX ] =







exp
(
−σα|ω|α

(
1 − iβ(sign(ω)) tan πα

2

)
+ iµω

)
if α 6= 1

exp
(
−σ|ω|

(
1 + iβ 2

π
(sign(ω)) ln |ω|

)
+ iµω

)
if α = 1.

Here, i =
√
−1 and sign(·) is the well-known sign function, with

sign(ω) =







1 if ω > 0,

0 if ω = 0,

−1 if ω < 0.

The probability densities of α-stable distributions exist and are continuous but are
known in closed form only for a few number of cases:

• The Gaussian distribution S2(σ, 0, µ) = N (µ, 2σ2), whose density is

1

2σ
√
π

exp(−(x− µ)2/4σ2), x ∈ R.

• The Cauchy distribution S1(σ, 0, µ), whose density is

σ

π((x− µ)2) + σ2
, x ∈ R.

• The Lévy distribution S1/2(σ, 1, µ), whose density is

( σ

2π

)1/2 1

(x− µ)3/2
exp

(

− σ

2(x− µ)

)

, x ∈ (µ,∞).

Stable distributions with α < 2 differ from Gaussian ones in many ways. First,

the tails decay like a power function. The smaller α, the slower the decay, and the

heavier the tails. Hence, they are likely to take values away from the median and

exhibit larger fluctuations. These distributions always have infinite variance and

when α ≤ 1, they have an infinite mean as well. Moreover, Gaussian distributions

are always symmetric around their mean, whereas the other stable distributions
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can exhibit arbitrary degrees of skewness. Thus, Gaussian distributions are not

useful for modeling systems with high variability and random variables that are

nonnegative, while other stable distributions are more flexible and do not exhibit

such limitations.

2.3.3 Moment Generating Function

In this section, we adapt the shot noise model to model the interference in a

binomial network. Using this framework, we analytically derive the MGF of the

interference at the origin (base station) in closed-form. By transforming the BPP

to a PPP, we also express the MGF of the interference in a Poisson network.

Theorem 1. Consider a network consisting of N nodes uniformly randomly dis-
tributed in a d-dimensional ball of radius R. Let λ = N/(cdR

d). The channel access
scheme is taken to be slotted ALOHA with parameter p. The MGF of the interfer-
ence at the origin resulting only from the nodes in the annular region S with inner
radius A and outer radius B (0 ≤ A < B ≤ R) is

MI(s) =

(

1 − λp

N

∫ B

A

EG

[(
1 − exp

(
−sGr−γ

))
dcdr

d−1
]

dr

)N

. (2.4)

Proof: Let K denote the number of nodes in the region S. The probability

distribution of K is by definition binomial,

PK(k) =

(
N

k

)(
Bd − Ad

Rd

)k (

1 − Bd −Ad

Rd

)N−k

.

The interference at the origin due to the k nodes in the annulus is given as a sum

of the received signal strengths from the individual nodes.

I(g, 0) =
k∑

i=1

Ii(gi, ri) =
k∑

i=1

tigir
−γ
i , (2.5)

where the ti’s are independent realizations of the Bernoulli random variable T with

Pr(T = 1) = p and Pr(T = 0) = 1 − p. T is the random variable representing

whether a node is transmitting or not.
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The MGF of the interference M(s) = E
[
e−sI(g,0)

]
, where the expectation is taken

over the fading states G, the variable T and the locations of the nodes1. As the Ii’s

are independent, the conditional MGF (given that there are k nodes) is expressible

in a product form. We have

MI|k(s) = E
[
e−s(I1(g1,r1)+I2(g2,r2)+...+Ik(gk,rk))

]
= M1(s)M2(s) · · ·Mk(s). (2.6)

Since the nodes are uniformly distributed in the annular volume, we have for each

i, 1 ≤ i ≤ k

Mi(s) =
1

cd (Bd − Ad)

∫ B

A

EG

[
dcdr

d−1
(
1 − p+ p · exp

(
−sGr−γ

))]
dr. (2.7)

All the interference terms are i.i.d., therefore each of the MGFs takes the same form,

and we have

MI|k(s) =

(
d

Bd −Ad

∫ B

A

EG

[
rd−1

(
1 − p+ p · exp

(
−sGr−γ

))]
dr

)k

. (2.8)

Taking the inverse Laplace transform yields

PI|K(x|k) =
1

2π

∫ c+i∞

c−i∞

esx

(

d

Bd −Ad

∫ B

A

EG

[

rd−1
(

1 − p + p · e−sGr−γ
)]

dr

)k

ds,

where c is a real number appropriately chosen so that the contour path of integration

is in the region of convergence of MI(s).

Using the law of total probability, we obtain

PI(x) =
N∑

k=0

Pr(K = k)PI|K(x|k)

=
1

2π

∫ c+i∞

c−i∞

esx

(

d

Rd

∫ B

A

EG

[

rd−1
(
1 − p+ p · exp

(
−sGr−γ

)) ]

dr

+1 − Bd − Ad

Rd

)N

ds.

1We use E
[
e
−sI(·)

]
instead of E

[
e

sI(·)
]
, because we can obtain the pdf by simply taking the

inverse Laplace transform of M(s).
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The MGF of the interference is thus given by

MI(s) =

(

1 − p
(
Bd −Ad

)

Rd
+
dp

Rd

∫ B

A

EG

[
rd−1

(
· exp

(
−sGr−γ

))]
dr

)N

, (2.9)

which is identical to (2.4). �

To simplify the expression for the MGF in (2.4), interchange the integral and ex-

pectation (per Fubini’s theorem) to obtain

MI(s) =

(

1 − λp

N
EG

[∫ B

A

(
1 − exp

(
−sGr−γ

))
dcdr

d−1dr

]

︸ ︷︷ ︸

D(s)

)N

. (2.10)

D(s) can be simplified as

D(s) = cdB
d
[

1 − e−sGB−γ
]

− cdA
d
[

1 − e−sGA−γ
]

+cd (sG)d/γ Γ
(
1 − d/γ, sGB−γ

)

−cd (sG)d/γ Γ
(
1 − d/γ, sGA−γ

)
, (2.11)

where Γ(a, z) is the upper incomplete Gamma function2 defined as

Γ(a, z) =

∫ ∞

z

exp(−t)ta−1dt.

Eqn. (2.11) is obtained by a change of variables t = sGr−γ and integration by parts.

The pdf of the interference is given by the inverse Laplace transform of the MGF.

Corollary 2. The MGF of the interference seen at any node in a homogeneous
Poisson network of density λ is

MI(PPP)(s) = exp (−λpEG [D(s)]) . (2.12)

Proof: If the number of nodes N tends to infinity in such a way that λ =

N/(cdR
d) remains a constant, then the BPP asymptotically (as R → ∞) behaves as

a PPP [14]. Taking the limit as N → ∞ in (2.10), we obtain (2.12). This is the MGF

2Mathematica: Gamma[a,z].
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of the interference distribution as seen at the base station. Due to the stationarity

of the Poisson process, this is representative of the MGF of the interference as seen

at any node as well. The same expression for the practical cases of d = 1 and d = 2

is derived in [3]. �

2.4 Cumulants and Moments of the Interference

In this section, we use the MGF to analytically compute the moments of the

interference distribution. These provide an indication of the interference’s behavior.

For example, they can be used to check if the interference converges to a Gaussian

and if so, how fast. We work with cumulants rather than the moments since they

are easier to obtain in this case. We are particularly interested in the first two

cumulants which give the mean and variance respectively. The nth cumulant of the

interference is defined as

Cn = (−1)n dn

dsn
lnMI(s)

∣
∣
∣
s=0

. (2.13)

Let

Tn :=







dp
Rd EG [Gn]

[
Bd−nγ−Ad−nγ

d−nγ

]

, γ 6= d
n

dp
Rd EG [Gn] ln

(
B
A

)
, γ = d

n
.

(2.14)

Proposition 3. The cumulants can be expressed recursively as

Cn = NTn −
n−1∑

i=1

(
n− 1

i− 1

)

CiTn−i. (2.15)

Proof: The proof is very simple but tedious and as follows. One sees after

repeatedly differentiating D(s) that

dn

dsn
D(s)

∣
∣
∣
s=0

= (−1)n+1 N

λp
Tn.
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The details in the steps of differentiation are cumbersome and are omitted here.

Denote the MGF of the interference (2.10) as M1
I (s) for the case of the exponent in

MI(s) equal to one i.e.,

M1
I (s) = 1 − λp

N
EG [D(s)] . (2.16)

Then, the Tn’s can also be expressed as

Tn = (−1)n dn

dsn
M1

I (s)
∣
∣
∣
s=0

. (2.17)

Therefore, if I1 is the random variable whose MGF is M1
I (s), then the Tn’s are the

moments of I1.

Now, the cumulants of I(t) (2.13) are written as

Cn = N(−1)n dn

dsn
lnM1

I (s)
∣
∣
∣
s=0

= NC1
n, (2.18)

where C1
n’s are the cumulants of the variable I1. By the recursive equation for the

moment-cumulant relation [19], Tn and C1
n are related as

C1
n = Tn −

n−1∑

i=1

(
n− 1

i− 1

)

C1
i Tn−i,

whence (2.15) is obtained by taking C1
n = Cn/N . �

The mean and variance of the interference are easily calculated from the first two

cumulants.

µI = C1 =
Ndp

Rd
EG [G]

[
Bd−γ − Ad−γ

d− γ

]

, (2.19)

and

σ2
I = C2 =

Ndp

Rd
EG

[
G2
]
[
Bd−2γ − Ad−2γ

d− 2γ

]

− µ2
I

N
. (2.20)

The mean and variance can also be computed using Campbell’s theorem [14]:

µI = E

[
N∑

i=1

tigir
−γ
i

]

=
Np

cdRd
EG [G]

∫ B

A

dcdr
d−1

rγ
dr, (2.21)

20



and

σ2
I = E





(
N∑

i=1

tigir
−γ
i

)2


− µ2
I

= E

[
N∑

i=1

t2i g
2
i r

−2γ
i

]

+ 2E






N∑

i,j=1
i<j

tigir
−γ
i tjgjr

−γ
j




− µ2

I

=
Np

cdRd
EG

[
G2
]
∫ B

A

dcdr
d−1

r2γ
dr + 2

(
N

2

)(µI

N

)2

− µ2
I , (2.22)

which give the same value as (2.19) and (2.20) respectively.

The nth moment µn is a nth degree polynomial in the first n cumulants. The coeffi-

cients of the polynomial are those occurring in the Faà di-Bruno’s formula [20]. For

example, the first four moments are

E[I] = C1.

E[I2] = C2 + C2
1 .

E[I3] = C3 + 3C1C2 + C3
1 .

E[I4] = C4 + 4C1C3 + 3C2
2 + 6C2

1C2 + C4
1 .

Under Nakagami-m fading, the cumulants (and moments) of the interference distri-

bution can be exactly computed using the moments of the power fading variable G

[15]:

EG[Gn] =
Γ(m + n)

mnΓ(m)
. (2.23)

2.4.1 Cumulants for a Poisson Network

As we let N → ∞ and R → ∞ keeping the density λ constant, we arrive at a

Poisson network. The nth cumulant of I for a Poisson network is given by

Cn = λpdcdEG[Gn]
Bd−nγ −Ad−nγ

d− nγ
. (2.24)
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When we let B → ∞, a necessary condition for the nth moment to be finite is

γ > nd. We remark that for practical values of γ and d, this does not generally hold

for n > 2, and thus all the higher-order cumulants are infinite.

2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Path Loss Exponent γ

 

 

N = 10, R = 5, d = 2, A = 2, B = 5, Ω = 5, m =1, p = 0.5

Mean interference for the PPP and the BPP
Variance of the interference for the BPP
Variance of the interference for the PPP

Figure 2.4. Comparison of the mean and variance of the interference for the BPP
and PPP under Rayleigh fading.

Fig. 2.4 compares the mean and variance of the interference for the BPP and PPP

system models versus the path loss exponent. Even though the mean interference

is the same in both cases, the PPP network has a higher interference variance due

to the uncertainty in the total number of nodes.

The ratio of the nth cumulants with and without fading is given by

Cn|m=m

Cn|m=∞
=

(m+ n− 1)!

mn(m− 1)!
(2.25)

Interestingly, the mean interference is independent of m, while the variance ratio
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varies as is 1 + 1/m. Thus the variance of the interference doubles for Rayleigh

fading as compared to the no-fading case (as also observed in [4]).

2.4.2 Closed-form Interference Distributions

In this section, we investigate the behavior of the interference distribution under

different values of the system parameters and study cases for which the interference

pdf exists in closed form.

1) Stable Distribution :

For a Poisson network of density λ with A = 0, B = ∞ and 0 < d < γ, the

interference has an α-stable distribution with index of stability α = d/γ [18]. For

the above parameters, the MGF takes the form

MI(s) = exp
(
−λpcdEG

[
Gd/γ

]
Γ (1 − d/γ) sd/γ

)
. (2.26)

Since the sum of stable distributions is another stable distribution, the form of the

interference distribution remains the same even when λ→ ∞.

Likewise, for a binomial network, the interference distribution approaches the α-

stable form for B < ∞ as N → ∞. As long as d < γ, the conditions for the

central limit theorem are violated and the interference never converges to a Gaussian

distribution. For the special case of α = 0.5, the interference assumes the Lévy

distribution and its pdf is obtained by taking the inverse Laplace transform as

PI(x) =

√
c

π
x−3/2 exp(−c/x), x ≥ 0, (2.27)

where c = (πλ2p2c2dE
2
G[G1/2])/4. All the moments of the interference are infi-

nite. Furthermore, the CDF can be written in terms of the Q-function as FI(x) =

2Q(
√

c/x). The same expressions have been obtained earlier for the two-dimensional

Poisson network for a deterministic channel [5] and in the presence of Rayleigh fad-

ing [6]. The Lévy distribution is plotted for different values of c in Fig. 2.5.
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Figure 2.5. The Lévy distribution for various values of c.

2) Infinite with Probability 1 :

Under the conditions A ≥ 0, B = ∞, d ≤ γ, the interference will be infinite with

probability one as N → ∞. To show this, consider (2.10)

MI(s) =

(

1 − λp

N
EG [D(s)]

)N

.

For B = ∞, d ≤ γ and s 6= 0,

D(s) =
(sG)d/γdcd

γ

∫ sgA−γ

0

1 − exp(−u)

u1+d/γ
du

≥ (sG)d/γdcd
γ

∫ c

0

1 − exp(−u)

u1+d/γ
du

(a)
≥

(sG)d/γdcd(1 − exp(−c))
cγ

∫ c

0

u

u1+d/γ
du

(b)
≥ +∞. (2.28)
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where c ∈ R and satisfies 0 < c ≤ sgA−γ. (a) holds since the function (1 −

exp(−u))/u is monotonically decreasing with u. (b) is true since d ≤ γ. Also, when

s = 0, D(s) = 1. Therefore,

lim
N→∞

MI(s) =







1, s = 0

0, s 6= 0,

and hence,

Pr(I < x) = 0 ∀x ∈ [0,∞). (2.29)

3) Gaussian Distribution :

It is often assumed that the interference in a large random network is the sum

of several i.i.d. contributions and is modeled as a Gaussian-distributed random

variable. We now study cases where the interference is indeed Gaussian-distributed,

and cases where it never converges to the Gaussian distribution.

a) A > 0, B <∞ :

If Cn <∞ for N = 1 and n = 1, 2, then conditions for the central limit theorem

are met and the interference approaches a Gaussian as the number of interferers N

goes to ∞ [17].

For A > 0 and B <∞ for any d and γ, all the moments are finite for N = 1, so in

the limiting case,

PI(x) → N (C1, C2) =
1√

2πC2

exp(−(x− C1)
2/2C2). (2.30)

b) A = 0, B <∞ :

When A = 0, the interference approaches a Gaussian only for d > 2γ. For

1/2 ≤ γ/d < 1, the mean interference is finite for N = 1 while its variance is

unbounded. Therefore, the interference never converges to a Gaussian as N → ∞.
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For γ/d = 1, all the moments of the interference are infinite, but the interference is

not infinite with probability one.

c) A > 0, B = ∞ :

In this case, the interference asymptotically approaches a Gaussian only for

d < γ.

Table 2.1 summarizes the forms assumed by the interference distribution for

various ranges of the system parameters.

TABLE 2.1

BEHAVIOR OF THE INTERFERENCE FOR VARIOUS RANGES OF THE

PARAMETERS A, B, d AND γ

A > 0, B = ∞ A = 0, B = ∞ A = 0, B <∞ A > 0, B <∞
0 < γ

d
< 1

2
Pr(I = ∞) = 1
as N → ∞

Pr(I = ∞) = 1
as N → ∞

I → Gaussian
as N → ∞

I → Gaussian
as N → ∞

1
2
≤ γ

d
< 1 Pr(I = ∞) = 1

as N → ∞
Pr(I = ∞) = 1
as N → ∞

I 9 Gaussian
as N → ∞

I → Gaussian
as N → ∞

γ
d

= 1 Pr(I = ∞) = 1
as N → ∞

Pr(I = ∞) = 1
as N → ∞

I 9 Gaussian
as N → ∞

I → Gaussian
as N → ∞

γ
d
> 1 I → Gaussian

as N → ∞
I = α-stable
for a PPP

I → α-stable
as N → ∞

I → Gaussian
as N → ∞

2.4.3 Kurtosis and Convergence to a Gaussian

In the case that Cn exists forN = 1 and n = 1, 2, it is known that the interference

approaches a Gaussian distribution as N → ∞. But how fast does this occur?

The kurtosis is a good parameter to assess the rate of the process at which the

distribution approximates a Gaussian. In probability theory, (excess) kurtosis is a

measure of the “peakedness” of the probability distribution of a real-valued random
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variable. Higher kurtosis means more of the variance is due to infrequent extreme

deviations, as opposed to frequent modestly-sized deviations. It is commonly defined

as the fourth central moment divided by the square of the variance of the probability

distribution minus 3, i.e.,

κ(I) =
E [(I − µI)4]

σ4
I

− 3 =
C4

C2
2

. (2.31)

The “−3” term is present to normalize the Gaussian distribution’s (excess) kurtosis

to zero.

Fig. 2.6 plots the kurtosis of the interference variable for various values of the net-

work parameters and helps calculate the N for which its behavior is approximately

Gaussian (kurtosis→ 0). In each case, the interference distribution converges to a

Gaussian.

2.5 Eliminating the Singularity of the Interference at the Origin

In this section, we show that it is possible to eliminate the diverging moments of

the interference by using either a modified path loss model or by employing a guard

zone around the base station.

2.5.1 Modified Path Loss Model

The decaying path loss model does not make much sense for small distances

as it claims that the signal strength is amplified for the case r < 1. In order to

overcome this flaw, the path loss model is taken by some authors to be (1 + r)−γ

or min{1, r−γ}. In this subsection, we consider the latter path loss model. For

A = 0, B = R (assumed to be > 1), the total interference at the origin can be taken

as the sum of two contributions I1 and I2, which are due to interferers from bd(0, 1)

and bd(0, 1)c respectively. The channel seen by the transmitting nodes in bd(0, 1)
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Figure 2.6. Kurtosis of the interference distribution for different values of the inner
radius A.

has a path loss exponent γ = 0. The mean of I is therefore calculated to be

µI =
Ndp

Rd

[
1

d
+
Rd−γ − 1

d− γ

]

=
Np

Rd

[
dRd−γ − γ

d− γ

]

.

The variance is harder to calculate since the interferences I1 and I2 are negatively

correlated (because the total number of nodes is fixed).

2.5.2 Guard Zone

In wireless networks, it is necessary to suppress transmissions by nodes close to

the desired receiver in order to achieve successful communication e.g. using CSMA.

This exclusion zone around the receiver is known as the guard zone [21]. Not having

a guard zone can result in undesirably high outage probabilities since the interference

caused by the nearby transmitters is often very high. Assume that the base station
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has a guard zone of radius d0, in which nodes do not transmit. This way, all the

moments are made finite and the MGF of the interference for this case can simply

be calculated by putting A = d0 in (2.10).

2.6 Outage Analysis

In this section, we determine the outage performance of the binomial network

under Rayleigh fading. We assume that the background noise in the network is much

weaker than the interference and neglect it in our analysis. Therefore, an outage

occurs if the SIR at the receiver is less than a certain threshold Θ. The outage at

the origin is calculated by assuming that the desired transmitter node is located at

unit distance from the origin and is transmitting at unit power. The received signal

power at the base station due to that node is therefore exponential with unit mean.

The outage probability Pr(O) is calculated as

Pr(O) = EI [Pr(G < IΘ | I)]

= EI [1 − exp(−IΘ)]

= 1 −MI(Θ). (2.32)

The probability of success ps is equal to MI(Θ).

Fig. 2.7 compares the success probabilities for the PPP and BPP nodal distributions.

We see that the PPP model provides an upper bound on the performance in a

binomial network and is not a good assumption to use when there are very few

interferers in the network. This is also apparent from Jensen’s inequality and the

fact that D(s) (see (2.11)) is concave w.r.t s.

2.7 Chapter Summary

In this chapter, we characterized the interference in a network where the nodes

are distributed as a BPP. Using the shot noise framework, a closed-form analytical
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Figure 2.7. Comparison of success probabilities for Poisson and binomial networks
for different values of N under Rayleigh fading.

expression for the MGF of the interference is obtained. The cumulants of the inter-

ference are calculated and used to study the asymptotic behavior of the interference

as the number of transmitters is increased. For certain values of the system parame-

ters, the pdf of the interference is shown to converge to a Gaussian distribution. We

also studied the outage behavior of the network and conclude that using the Poisson

network model in analyses provides an overly optimistic estimate of the network’s

performance when the number of interferers is small and the threshold Θ is high,

i.e., for high-rate communication.
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CHAPTER 3

PATH LOSS EXPONENT ESTIMATION IN LARGE NETWORKS

3.1 Introduction

The wireless channel presents a formidable challenge as a medium for reliable

high-rate communication and places fundamental limitations on the performance

of networks. It is responsible not only for the attenuation in the strength of the

propagated signal but also causes spatial and temporal variations in this loss that

are unpredictable due to user movement and changes in the environment. In order

to capture all these effects, the path loss for RF signals is commonly represented

as the product of a deterministic distance component (large-scale path loss) and a

randomly-varying component (small-scale fading). The large-scale path loss model

assumes that the received signal strength falls off with distance according to a power

law, at a rate termed the PLE. Fading describes the fluctuations in the received

signal strength due to the constructive and destructive addition of its multipath

components. While variations due to path loss happen over large distances (hun-

dreds of meters), variations due to multipath occur over much shorter distances, on

the order of the RF wavelength. The large-scale path loss is the simplest model

for signal propagation and also a major component considered during the analysis

and design of communication systems [22]. An critical issue is to characterize the

large-scale behavior of the channel and accurately estimate the PLE, based solely

on received signal measurements.
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This problem is not trivially solvable even for a single link due to the existence of

multipath and background thermal noise. For large ad hoc and sensor networks, the

problem is further complicated due to the following reasons: First, the achievable

performance of a typical wireless network is not only vulnerable to noise and fading,

but also to interference due to the presence of simultaneous transmitters. Dealing

with fading and interference simultaneously is a major difficulty in the estimation

problem. Moreover, the distances between nodes are subject to uncertainty. Often,

the distribution of the underlying point process can be statistically determined, but

precise locations of the nodes are harder to measure. In such cases, we will need

to consider the fading and distance ambiguities jointly, i.e., define a spatial point

process that incorporates both. In this chapter, we present three different methods

to accurately estimate the channel’s PLE for large wireless networks in the presence

of fading, noise and interference, based on the received interference measurements.

We also provide simulation results to depict the performance of the algorithms and

study the estimation error. Additionally, we furnish some basic methods to infer

the intensity of the Poisson process, while providing Crámer-Rao lower bounds on

the mean squared error (MSE) wherever possible.

3.2 Motivation and Related Work

3.2.1 Motivation

In this section, we illustrate the importance of knowing the PLE for tackling

various issues in communication. In general, since the channel model is primarily

defined by the PLE, analysis and design of wireless networks naturally rely heavily

on its estimates. Though it is assumed in many problems that the value of the PLE

is known a priori, this is not true in practice, and an accurate estimate of the PLE

is crucial for solving them.
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The topic of PLE estimation is closely related to that of localization and can

essentially be thought of as its complementary problem. In sensor networks, node

localization is an integral component of network self-configuration. When bestowed

with the ability to detect their positions, ad hoc deployed sensor nodes can support

a rich set of geographically aware protocols and accurately report the regions of

detected events. Detailed knowledge of the nodes’ locations is also needed for per-

forming energy-efficient routing in a decentralized fashion. An important class of

localization algorithms are the ones based on RSS measurements [23, 24] that need

accurate estimates of the PLE to perform well. Another fundamental issue in wire-

less sensor networks is the sensing problem that deals with how well and accurately

a target area or a phenomenon can be monitored. Of importance in such applica-

tions are characteristics such as the coverage and the connectivity of the network,

and studying these properties need accurate estimates of the PLE.

Many of the existing results on capacity scaling for large ad hoc networks strongly

depend on the PLE as well. With γ being the PLE, the best known achievability

result [25] states that capacity scales as n2−γ/2 for 2 ≤ γ < 3 and as
√
n for

γ ≥ 3. Depending on the value of the PLE, appropriate routing strategies (nearest-

neighbor hopping or hierarchical cooperative) may be implemented to reach the

maximally achievable scaling of the system throughput. A good knowledge of the

PLE is also essential for designing simple line networks. [26] discusses capacity

results for TDMA-based linear networks and shows that the optimum number of

hops needed to achieve a desired end-to-end rate strongly depends on the PLE value.

For example, when the desired (bandwidth-normalized) spectral efficiency exceeds

the PLE, single-hop transmission outperforms multihopping.

Energy consumption in wireless networks is a crucial issue that needs to be

addressed at all the layers of the communication system. [27] analyzes the energy
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consumed for several routing strategies that employ hops of different lengths in a

large network with uniformly randomly distributed nodes. Using the results therein,

we demonstrate that a good knowledge of the PLE is necessary for efficient routing.

Consider the following two simple schemes where communication is assumed to occur

only in a sector φ around the source-destination axis.

1) Route hop by hop across n nearest neighbors from the source to destination

in the sector φ.

2) Transmit directly to the n′th neighbor in the sector φ. Here, n′ is chosen in

a way that the expected progress is the same for both the schemes.

It is seen from [27] that the ratio of the consumed energies for the two schemes

is

E1

E2

=
n2Γ(1 + γ/2)Γ(n′)

Γ(n′ + γ/2)
,

where Γ(.) represents the Gamma function and n′ = π
4
(n2 − 1) + 1. This is indepen-

dent of φ and is plotted in Fig. 3.1 for different values of n. From the curves, we

see that the PLE plays an important role in determining the more energy-efficient

routing strategy. When γ is low, scheme 2 consumes less energy while relaying is

beneficial at high PLE values.

The performance of contention-based systems such as slotted ALOHA is very

sensitive to the transmission probability p and hence the optimal operating point of

the system has to be chosen. The value of the contention parameter is determined

based on various motives such as maximizing the network throughput [3, Eqn. 20]

or optimizing the spatial density of progress [8, Eqn. 5.6]. Fig. 3.2 plots the per-

node throughput versus p in a system running the slotted ALOHA protocol. It is

seen that the throughput also depends greatly on the PLE and depending on the

estimate of γ, the optimal value of the contention probability can be chosen.

PLE estimation is also an integral component of the cellular phone location
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Figure 3.1. The ratio of the energies for the two schemes versus γ.

system, which has garnered considerable attention. There are several reasons why

network providers need to estimate the position of mobile terminals in the network.

Primarily, they have to be able to assist emergency communications, which needs

accurate location estimates of the mobiles. Localization is also desired to provide

positioning, tracking and navigation services to people with special needs, such as

firefighters, soldiers, elderly patients, etc. Besides, knowing the PLE accurately

helps determining when the handoff procedure needs to be initiated so that calls are

not dropped. In addition, it helps carry out open loop power control efficiently.

3.2.2 Review of Literature

In this section, we survey some of the existing estimation methods in litera-

ture. Much of the past work on PLE prediction has focused on received signal
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strength (RSS)-based localization techniques. Most authors assume a simplified

channel model consisting only of a large-scale path loss component and a shadowing

counterpart, but we are not aware of any prior work that has considered fading and

interference jointly in the system model.

1) Estimation based on a known internode distance probability distribution :

This is discussed in [28] and assumes that the distance distribution between two

neighboring nodes i and j is known or can be determined easily. It also makes the

simplified assumption that there is no interference in the system so that when i

transmits, j’s received signal is only due to node i. With the transmit power equal

to P0[dBm] (assume this is a constant for all nodes), the RSS at node j is modeled
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by a log-normal behavior as

Pij [dBm] ∼ N (P ij [dBm], σ2
dB),

where σ denotes the log-normal spread and P ij [dBm] = P0[dBm] − 10γ log10 dij .

Now, if the neighbor’s distance distribution is given by pR(r), then

P ij = P0ER

[
R−γ

]
. (3.1)

E.g., if the internodal distance distribution is Rayleigh1 with mean
√

π/2, then

P ij = P02−γ/2Γ(1 − γ/2). (3.2)

The value of γ is obtained by equating P ij to the empirical mean value of the received

powers taken over several node pairs i and j. For the example stated above, the

value of γ may be predicted using a look-up table.

2) Estimation based on a known, yet complex neighbor distance probability distri-
bution :

If the nearest neighbor distribution is in a complicated form that is not integrable,

an idea similar to the quantile-quantile plot can be used [28]. The quantile-quantile

plot is a graphical technique for determining if two sets of data are drawn from a

common distribution. Choose a set of N random points λ1, λ2, . . . , λN uniformly

distributed in [0,1]. The quantile points of the nearest neighbor distance distribu-

tion d1, d2, . . . , dN and the measured received power p1, p2, . . . , pN corresponding to

λ1 . . . λN can be determined by setting

Pr(D ≥ di) = λi and Pr(P ≥ pi) = λi, i = 1, 2, . . . , N,

1The nearest neighbor distance function when the nodal arrangement is a planar PPP is
Rayleigh distributed. The mean value assumed is just for the sake of convenience.
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where d denotes the (known) neighbor distance distribution and P , the distribution

of the received power. An estimation of γ can be obtained by minimizing the MSE

MSE(γ) =
N∑

i=1

(pi − Pod
−γ
i )2. (3.3)

Writing out the power terms in dBm, we get an equivalent MSE term,

MSE(γ) =

N∑

i=1

(pi[dBm] − Po[dBm] + 10γ log10(di))
2.

Differentiating the above expression and setting it to zero yields the estimate

γ̂ =
−∑N

i=1(pi[dBm] − Po[dBm]) log10(di)
∑N

i=1 10(log10(di))2
. (3.4)

3) Estimation that does not rely on distance measurements :

Sometimes, it might not be possible to obtain the neighbor distance distribution.

The idea of estimating γ using the concept of the Cayley-Menger determinant [28] is

useful in such cases. For this method to work, a set of fully connected quadrilaterals

in the network need to identified. By fully connected quadrilaterals, we mean a

set of four nodes located such that the received power from any node to any other

is above a certain threshold level. For obvious reasons, such a method fails when

fading is considered. With these four nodes, one can have six unique tuples of the

measured power and distances (pij.dij). [28] uses the idea that for a two-dimensional

network, the Cayley-Menger matrix can have rank at most equal to 3. Equating the

Cayley-Menger determinant to zero is used to estimate the value of γ. However, the

value of γ estimated as above is shown to have a large bias. The pattern matching

method works to remove this bias.

4) Pattern Matching Technique :

[28] observes that that the relationship between E(γ̂), σ and γ is independent

of the distribution of the vertices of various quadrilaterals as well the shape of
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the network. They use a pattern matching technique to estimate the PLE with the

knowledge of the received power amplitude alone. Their numerical evaluation shows

that the bias of γ has an approximate linear relationship with σ for a fixed γ. A

look-up table is generated and is used in the estimation process to remove the bias

that exists when using the principle of the Cayley-Menger determinant.

As described in the introduction, the situation is completely different when in-

terference and fading are accounted for and we cannot use the commonly known

RSS-based estimators directly.

3.3 System Model

We consider a large planar ad hoc network, where nodes are distributed as a

homogeneous PPP Φ of intensity λ (assumed unknown). The PPP model for the

nodal distribution is a ubiquitously used one and may be justified by claiming that

sensor nodes are dropped from an aircraft in large numbers; for mobile ad hoc

networks, it may be argued that terminals move independently of each other.

The attenuation in the channel is modeled as a product of the large-scale path

loss with exponent γ and a flat block-fading component. To obtain a concrete set

of results, the amplitude H is taken to be Nakagami-m distributed with parameter

Ω. Letting m = 1 results in the well-known case of Rayleigh fading, while lower

and higher values of m signify stronger and weaker fading scenarios respectively.

The block fading assumption is necessary for our analysis and may be justified

by assuming that the nodes or surrounding objects move slightly so that in each

transmission block, different fading realizations are observed. When dealing with

received signal powers, we use the power fading variable denoted by G = H2. Useful

in the later sections are the moments of G [15],

EG[Gn] =
Γ(m+ n)

mnΓ(m)
Ωn.
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Note that EG(G) = Ω and is independent of m, while its variance is σ2
G(G) = Ω2/m.

Without loss of generality, we take Ω = 1.

Since the PLE estimation is usually performed during network initialization,

it is fair to assume that the transmissions in the system during this phase are

uncoordinated. Therefore, we take the channel access scheme to be slotted ALOHA.

We denote the ALOHA contention probability by a constant p. Consequently, the

set of transmitters forms a PPP Φ′ of intensity λp. Also, we assume that all the

transmit powers are equal to unity. Then, the interference at receiving node y on

the plane is given by

IΦ(y) =
∑

z∈Φ′

gzy‖z − y‖−γ,

where gzy is the fading gain of the channel and ‖ · ‖ denotes the Euclidean distance.

By definition, an outage occurs if and only if

gxy‖x− y‖−γ

N0 + IΦ\{x}(y)
< Θ, (3.5)

where IΦ\{x}(y) denotes the interference in the network at y due to all the transmit-

ters, except the desired one at x, and N0 is the noise power.

3.4 Estimation of the density of the Poisson network

First, we furnish some basic methods to estimate the intensity of the network,

which will be useful in the later sections of this chapter for estimating the parameters

p and m. We also analyze Crámer-Rao lower bounds on the MSE wherever possible.

3.4.1 The Naive Solution

The most fundamental method to estimate the network’s intensity is simply to

use its definition. Observing the process through a 2D-window W , an unbiased

estimator for the intensity is given by

λ̂ = Φ(W )/ν2(W ). (3.6)
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We know that Φ(W ) is Poisson-distributed with mean λν2(W ) i.e., it is governed

by a probability mass function

f(Φ(W ) = k;λ) = exp(−λν2(W ))
(λν2(W ))k

k!
. (3.7)

The regularity condition is met in this case [29]

∂

∂λ
ln f(Φ(W ) = k;λ) =

ν2(W )

λ

[

λ̂− λ
]

, (3.8)

and thus, this is an efficient estimator meeting the following Crámer-Rao lower

bound (CRLB) on the error variance.

MSE(λ̂) = λ/ν2(W ). (3.9)

Since Φ is ergodic, λ̂ is strongly consistent in the sense that it almost surely converges

to the true value i.e., λ̂ → λ as the window’s area is increased. Table 3.1 consists

of recorded estimates for a sample network realization and supports the fact that

the estimation error reduces as the window size is made large. The theoretic MSE

values are also provided.

TABLE 3.1

ESTIMATES OF λ FOR VARIOUS CIRCULAR WINDOW SIZES. TRUE

VALUE: λ = 1

Window radius 25 50 75 100 200
Estimate of λ 0.9841 1.0339 1.0227 1.0190 1.0085

% Error -1.59 3.39 2.27 1.9 0.85
MSE 5.1e-4 1.27e-4 5.7e-5 3.2e-5 8e-6

Once λ has been roughly estimated, confidence intervals can be established for

it [14]. Crow et al. [30] provide approximate confidence intervals for λ, employing
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the normal approximation and a continuity correction. If δ be the desired breadth

of the confidence interval and ε the required confidence level, then

δν2(W ) ≈
[zε/2

2
+
√

1 + λν2(W )
]2

−
[zε/2

2
−
√

λν2(W )
]2

, (3.10)

where zε/2 = Q−1(ε/2), and Q−1(·) is the inverse Q-function. From this, we can use

the preliminary estimate of λ to obtain

ν2(W ) ≈
4z2

ε/2λ

δ2
. (3.11)

Accordingly, if one wishes to obtain an estimate of the intensity accurate to 2 decimal

places (δ = 0.01) with 99% confidence (ε = 0.01), and a preliminary estimate of

λ = 1, ν2(W ) = 266256. A square of side about 500 units is needed to obtain an

accurate estimate.

Alternatively, one can observe the process throughN disjoint windows W1, . . . ,WN

and use the unbiased estimator

λ̂ =
1

n

N∑

i=1

Φ(Wi)

ν2(Wi)
. (3.12)

Since Φ(Wi) are independent random variables for each i, the following Crámer-Rao

bound is established on the MSE.

MSE(λ̂) ≥ λ
∑N

i=1 ν2(Wi)
. (3.13)

Since this meets the regularity condition and is the minimum variance unbiased esti-

mator, it is also the maximum-likelihood estimator. As a large number of windows

are considered, the MSE vanishes. Also, if the window size is large, the MSE is

nulled as seen before.

3.4.2 Estimation Based on Empty Quadrats

Here, the observation window W is partitioned into a large number of disjoint

square subregions each of equal area a2. The void probability for the PPP in each
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of those small quadrats is equal to p0 = exp(−λa2). Equating the fraction of empty

quadrats to p0, λ is estimated as

λ̂ = ln(1/p0)/a
2. (3.14)

The estimates of the intensity for a sample realization of the PPP are shown in

Table 3.2. To obtain these estimates, we generated a PPP with unit intensity on a

150 × 150 square window and used quadrats of size a× a. The smaller a, the more

accurate is the estimate, since it is based on more quadrats which permits better

averaging. Note that this method can also be performed with subregions of equal

area, that are not necessarily squares.

TABLE 3.2

ESTIMATES OF λ USING THE EMPTY QUADRATS METHOD. TRUE

VALUE OF λ = 1

a 2 1 0.5 0.25

λ̂ 1.0366 1.0055 0.9979 0.9994
% Error 3.66 0.55 -0.21 -0.06

3.4.3 Estimation Based on Nearest Neighbor Distances

In certain situations, it might be possible to measure distances between nodes in

the network. One such case is where the location of some nodes are known and these

act as beacons assisting other nodes to estimate their locations. The knowledge of

the nearest neighbor distances can be used to assist in estimating the network’s

intensity.

In a homogeneous Poisson network, it is well-known that the neighbor distances

follow a generalized gamma distribution [31]. Accordingly, the density of the dis-
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tance to the kth-nearest neighbor for a planar network is given by

f(dk = r;λ) = exp(−λπr2)
2(λπr2)k

rΓ(k)
, k = 1, 2, . . . . (3.15)

The maximum-likelihood (ML) estimate of λ is obtained from here by setting [29]

∂

∂λ
f(dk = r;λ)|λ=λ̂ML

= 0,

which gives

λ̂ML = k/πr2. (3.16)

For a more accurate result, we can use N beacon nodes to make a N -sized vector

measurement, resulting in the ML estimate

λ̂ML =
Nk

π
∑N

i=1 r
2
i

. (3.17)
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Figure 3.3. The bias in λ̂ML for the kth nearest neighbor measurements captured
from N beacons for k = 1, 2, 3.

44



However, as Fig. 3.3 depicts, the ML estimate is biased. Moreover, the bias

takes on negative values as well. The CRLB for an unbiased estimate of λ is given

by the inverse of the Fisher information as

CRLB =
1

ER

[
∂2

∂λ2 ln f(R;λ)
]

=
λ2

kN
. (3.18)
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Figure 3.4. The MSE of λ̂ against the CRLB for the kth nearest neighbor measure-
ments captured from N beacons for k = 1, 2, 3.

Fig. 3.4 plots the MSE and the CRLB for the estimates obtained from the first

three neighbors’ distance measurements. Though it is seen that the estimation error

is lowered with farther neighbors, it is harder to make such measurements since it

requires information to be relayed across more nodes.
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3.5 Path Loss Exponent Estimation

This section describes three algorithms for PLE estimation and also provides

simulation results on the estimation errors. Each method is based on a certain net-

work characteristic namely the interference moments, the outage probabilities and

the network’s connectivity properties, respectively. The PLE estimation problem is

essentially tackled by equating the practically measured values of these quantities

to the theoretically established ones to obtain γ̂. There is a caveat though, that

needs to be addressed. In theory, we assume that we have access to a large number

of realizations and usually derive results for an “average network”, that is the one

obtained by averaging over all possible realizations of the nodal distributions and

the channel. However, the problem in practice is that we have only a single real-

ization of the nodal distribution at hand. Fortunately, in the scenario where nodes

are distributed as a homogeneous PPP, we can work around this issue by using its

property of ergodicity. We now state the ergodic theorem for spatial processes that

states that statistical averages of measurable functions may be replaced by spatial

averages. Using this, we argue that a single realization of the network is sufficient

for accurate estimation of the PLE.

Theorem 4. (Ergodic Theorem [14, p. 172]) Let T : X → X be a measure pre-
serving ergodic transformation on a measure space (X,Σ, ν) and consider a “well-
behaved” function (more precisely, f must be L1-integrable w.r.t the measure ν i.e.,
f ∈ L1(X,Σ, ν)). Define the “time-average” of f , f̂(x) as the average over iterations
of T starting at some initial point x. Accordingly,

f̂(x) = lim
n→∞

1

n

n−1∑

k=0

f(T kx), (3.19)

where T k is the kth iterate of T . Likewise, the spatial average of f is defined as

f̄(x) =
1

ν(X)

∫

fdν. (3.20)

Assuming that ν(X) is nonzero and finite, f̂(x) = f̄(x) almost everywhere.
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The ergodic theorem states that for an ergodic endomorphism, the space and

time averages are equal almost everywhere. Let T denote the transformation whose

iterates result in different realizations of the PPP. Since the PPP is ergodic, T

represents a measure-preserving ergodic transformation. Thus, while f̂(x) reflects

the average of f over different realizations of the PPP at a single node, f̄(x) is

equivalent to taking an average over different nodes in a single realization, and

these two are equal almost everywhere. In conclusion, we remark that the estimation

process can be performed in practice by looking only at a single realization of the

network and taking the necessary measurements over several nodes.

3.5.1 Estimation Using the Moments of the Interference

A simple technique to infer the PLE γ uses the knowledge of the interference

moments. Using the estimation value of the PLE and the predicted value of the

intensity of the Poisson process (from the previous section), we can also infer the

parameters p and m.

According to this method, nodes simply need to record the strength of the in-

terference power that they observe. By the ergodic theorem, the mean and variance

of the set of measurements at several different nodes match the theoretically de-

termined values. We first state existing theoretic results and subsequently describe

how the estimation can be performed in practice.

For the PPP network running the slotted ALOHA protocol, the nth cumulants

of the interference resulting from transmitters in an annulus of inner radius A and

outer radius B around the receiver node are given as [32]

Cn = 2πλpEG[Gn]
B2−nγ − A2−nγ

2 − nγ
. (3.21)

In particular, we can let B to be large (considering the entire network) so that the
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mean and variance of the interference are

µI = C1 = 2πλp
A2−γ

γ − 2
(3.22)

and

σ2
I = C2 = 2πλp

(

1 +
1

m

)
A2−2γ

2γ − 2
. (3.23)

Note that if A = 0 and γ > 2 (a fair assumption in a wireless scenario), all the

moments of the interference are infinite. However, in practice, nodal dimensions are

finite and therefore, this singularity condition is not observed. Denote the minimum

spacing between nodes (antennas) by a constant A0, that is known. Thus, in reality,

there can be no transmitters inside a disc of radius A0 around any node. In other

words, A0 can be considered to be the guard zone radius.

The algorithm based on the interference moments works by matching the prac-

tical and theoretic values of the mean interference and is described as follows.

1) Consider an arbitrary node in the network and number it node 1. Record the

value of the interference power (received power) at node 1, I1.

2) Repeat the above method for the other nodes (2, . . .) recording values of

interference powers I2, . . . at the respective nodes. Eventually, the empirical mean

interference (1/N)
∑N

i=1 Ii converges for some node number N .

By the ergodic theorem, the observed mean value matches the one given by (3.22)

with A = A0. The value of γ can be estimated by using a look-up table and the

known values of A0, p and estimated intensity λ̂.

Alternatively, we can use a “differential method” that is based on measurements

taken for two different guard zone radii values. This algorithm assumes that each

node has information on its location and creating guard zones is feasible. Basically,

one needs to measure the mean interference values µ1
I and µ2

I for guard zone radii

A1 and A2 respectively. Since these observed values of the mean interference match
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the theoretic values closely, we obtain

µ1
I

µ2
I

=

(
A1

A2

)2−γ

,

and an unbiased estimate of γ is

γ̂ = 2 − ln(µ1
I/µ

2
I)

ln(A1/A2)
. (3.24)

The advantage of the differential method is that it does not require the knowledge

of the ALOHA contention probability p or the intensity of the process.

Fig. 3.5 depicts a stem plot of the histogram of the estimated PLE values. The

predicted values fit well into a Gaussian curve (solid line) with the same statistics

as the estimates, meaning that the estimation error is approximately Gaussian in

nature. The estimate of γ is also seen to closely match its true value of 4.

The estimate γ̂ can be used along with λ̂ to predict the value of the transmission

probability p. Indeed, using (3.22), an estimate of the ALOHA contention parameter

is obtained immediately as

p̂ =
µ1

I(γ̂ − 2)

2πλ̂A2−γ
1

. (3.25)

Furthermore, an estimate of the fading parameter m is obtained by inverting (3.23)

as

m̂ =

(

σ2
I (γ̂ − 1)

πλ̂p̂A2−2γ̂
1

− 1

)−1

, (3.26)

where σ2
I is the empirical variance of the interference for guard zone radius A1.

For the case that the channels are Rayleigh-faded (exponential received powers),

we formulate two other schemes for the estimation process. The first method con-

cerns outage probabilities, while another technique makes use of the connectivity

properties of the network.
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Figure 3.5. Histogram of γ̂ for the estimation algorithm based on the interference
moments. Error variance ≈ 0.0015.

3.5.2 Estimation Based on Outage Probabilities

In the estimation procedure using the moments of the interference, a suitable

guard zone needs to be imposed around each receiver node. This might not be

a practical/feasible solution, particularly in cases where there is no relative node

location information available. When it is known that the channel fading is Rayleigh,

the PLE can also be estimated using outage probabilities as discussed below. Similar

to the previous algorithm, here too, we do not need an estimate of λ or the value of

p. We first derive some theoretic results and latterly describe a practical scheme to

guess γ.

By Slivnyak’s theorem [14], the distribution of the PPP is unaffected by the

addition of a point to the process but removing it from consideration. The intro-
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duction of this point is useful in formalizing the notion of a “typical point” of the

process. Given this, consider an arbitrary node in the network and in addition,

place a transmitter at unit distance away from it2. Now, we shift the transmitter

node to the origin and consider the outage probability for this typical node pair.

Assume that noise and interference are independent of each other. The probability

of success for this transceiver pair is given by

ps = E
!0
I [Pr(G > (N0 + I)Θ | I)]

= exp(−N0Θ)E!0
I [exp (−IΘ)]

= exp(−N0Θ)MI (Θ) , (3.27)

where MI(s) is the MGF of the interference power I and E
!0
I denotes the expectation

with respect to the reduced Palm measure [14]. It is basically the expectation

conditioned on there being a point at the origin 0, but not including the point for

calculation of the interference power. Using the closed-form expression for the MGF

[32, Eqn. 20], we have for γ > 2,

ps = c1 exp(−c2), (3.28)

where c1 = exp(−N0Θ) and c2 = λpπΓ (1 + 2/γ) Γ (1 − 2/γ) Θ2/γ . The outage

probability 1 − ps is plotted versus γ in Fig. 3.6 for different values of threshold.

For the rest of this subsection, we assume that the system is interference-limited.

In other words, N0 � I and therefore, ps ≈ exp(−c2). We now describe a practical

scheme to estimate γ. The idea behind this algorithm is to compute the SIR values

at each node and use the empirical distribution to compute the success probability,

which by the ergodic theorem, matches the theoretic value. It works as follows.

1) Consider an arbitrary node, call it the receiving node and place a transmitter

at a unit distance away from it. The transmitter should not belong to the original

2The distance requirement is just a convenient assumption so that when the transceivers are
unit distance apart, the PLE will not affect the received power strength
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Figure 3.6. Theoretical values of the outage probabilities at different thresholds.

process. With a transmit power of unity, the received power due to that transmitter

alone is exponential with unit mean. Measure the SIR at this receiver node.

2) Repeat for several nodes, thus obtaining a histogram of the measured SIR

values. For any given value of Θ, the probability of success can be empirically

determined from the histogram.

The success probability obtained thus matches the one given by (3.28). If it is

possible to measure the value of p, a look-up table can be generated to estimate the

PLE using the known value of p and an estimated intensity λ̂.

If the density of the network or p is not accurately known, we can use a differential

method to estimate γ. Accordingly, obtain histograms of the measured SINR for

two different values of the threshold, say Θ1 and Θ2. Denote the empirical values

of the success probabilities corresponding to the two values of Θ as p1
s and p2

s.
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Theoretically, we obtain

ln(p1
s)

ln(p2
s)

=
ln(MI(Θ1))

ln(MI(Θ2))
=

(
Θ1

Θ2

)2/γ

,

and therefore an unbiased estimate of γ is

γ̂ =
2 ln(Θ1/Θ2)

ln(ln(p1
s)/ ln(p2

s))
. (3.29)

Fig. 3.7 plots the histogram of the estimated PLE values when the true value is

γ = 4. The estimation error fits well into a Gaussian curve for this scheme as well.
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Figure 3.7. Histogram of γ̂ for the method based on outage probabilities. Error
variance ≈ 0.04.

We remark that it may not seem practical to place the transmitter for each re-

ceiver node where measurements are taken. Instead, nodes can equivalently assume

the existence of a virtual transmitter and assume the signal power to be an expo-
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nential random variable with unit mean. This way, they can simply measure the

interference power alone and compute the SIR.

Error analysis when the fading distribution is not necessarily Rayleigh :

A critical assumption used for the estimation algorithm based on outage prob-

abilities is that the fading component of the channel is Rayleigh distributed. It is

interesting to see how much the Nakagami fading parameter m affects the estima-

tion results, i.e., how large the error is in the case that the fading distribution is not

actually Rayleigh, but assumed to be so. We now provide some empirical results to

depict the behavior of the error when the true value of m is not unity.

Fig. 3.8 shows the CDF of the error for some values of m ranging from 0.5 to

∞. For a slight deviation of m from unity, the predicted values differ largely from

the true value, particularly when the fading effect is stronger than Rayleigh fading

(0.5 ≤ m < 1). The dotted line for m = 1 shows that the error median in this case

is 0. Moreover, since the error is roughly Gaussian distributed, we conclude that

the estimate of γ is unbiased when the channel is indeed Rayleigh. We also observe

that the error CDF converges as m→ ∞.

Fig. 3.9 plots the MSE, taken over several different network realizations versus m

for different PLE values. Again, we observe that the performance of this algorithm

depends critically on the fading parameter m especially at lower values, since a slight

deviation of m from unity largely affects the estimation error.

As a supplement to the simulation results, we now analytically derive the outage

probability when the fading component G is a general Nakagami-m distributed

variable.

The pdf of the power fading variable is given by

pG(g) =
mm

Γ(m)
gm−1 exp(−mg), m ≥ 0.5. (3.30)
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Using this, we have

ps = E
!0
I [Pr(G > IΘ | I)]

= E
!0
I

[∫ ∞

IΘ

mm

Γ(m)
gm−1 exp(−mg)dg

]

=
1

Γ(m)

∫ ∞

0

Γ(m, xΘm)PI(x)dx, (3.31)

where Γ(·, ·) is the upper incomplete gamma function3 and PI(x) denotes the pdf of

the interference function.

The expressions can be further simplified when m is an integer. For m ∈ Z
+, we

3Mathematica: Gamma[a,z]
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have

ps
(a)
=

m−1∑

k=0

1

k!

∫ ∞

0

(xΘm)k exp(−xΘm)PI(x)dx

(b)
=

m−1∑

k=0

(−Θm)k

k!

dk

dsk
MI(s)|s=Θm, (3.32)

where (a) is obtained from the series expansion of the upper incomplete gamma

function and (b) from the definition of the MGF. We also have the following closed-

form expression for the MGF [32, Eqn. 20]

MI(s) = exp(−λpπEG[G2/γ ]Γ(1 − 2/γ)s2/γ).

Using this, we get

ps = exp(−c3)
m−1∑

k=0

ck3
k!

(
2

γ

)k

, (3.33)
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where c3 = λpπEG(G2/γ)Γ(1 − 2/γ)(Θm)2/γ. The outage probabilities at integer

values of m for γ > 2 can be numerically evaluated from the above equation.

3.5.3 Estimation Based on the Cardinality of the Transmitting Set

In this subsection, we present a method to estimate the PLE based on the

connectivity properties of the network. For any node, define its transmitting set as

the group of transmitting nodes whom it receives a packet from, in a given time

slot. More formally, for receiver y, transmitter node x is in its transmitting set

if they are connected i.e., the SINR at y is greater than a certain threshold Θ.

Note that this set changes from time slot to time slot. This algorithm is based on

matching the theoretic and practical values of the mean number of elements in the

transmitting set. Note that for Θ = 0 dB, the condition for a transceiver pair to

be connected is that the received signal strength is greater than the interference

power. Thus, for Θ ≥ 1, the cardinality of the transmitting set can at most be one,

and that transmitter is the one with the best channel to the receiver. The following

proposition forms the basis of the estimation algorithm.

Proposition 5. Under the conditions of Rayleigh fading and N0 � I, the cardinal-
ity of the transmitting set is Poisson distributed with parameter (Γ(1 + 2/γ)Γ(1 −
2/γ)Θ2/γ)−1.

Proof: Extending the procedure used for deriving (3.28), we see that the

success probability for a transceiver pair at an arbitrary distance R units apart is

ps(R) = c′1(R) exp(−c2R2),

where c′1(R) = exp(−N0R
γΘ). For N0 � I, ps ≈ exp(−c2R2). Now, we place an

additional receiver node O at the origin (which does not affect the distribution of

the PPP) and analyze the transmitting set for this “typical” node.

Consider a disc of radius a centered at the origin. Let Ei denote the event that

the ith transmitter inside this disc is in O’s transmitting set. For R uniformly
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distributed in [0, a], we have

P(Ei) = ER[ps(R) | R]

=
2π

πa2

∫ a

0

re−c2r2

dr

=
1

a2c2
(1 − e−a2c2). (3.34)

Note that in any given time slot, the events Ei and Ej for arbitrary transmitters i and

j are actually slightly correlated. This is because i acts as an interferer for j’s signal

and vice versa. We neglect this minor dependence and assume that the Ei’s are

independent events. Also, since P(Ei) is independent of i, we take P(Ei) = P(E),

∀i, to simplify notation. Denote the mean number of transmitters in the disc of

radius a by Na = λpπa2. Then, the probability of having exactly k elements in the

transmitting set T is calculated as

P(NT = k) = lim
a→∞

EN :N≥k

[(
N

k

)

P(E)k(1 − P(E))N−k

]

= lim
a→∞

∞∑

n=k

e−NaNn
a

n!

(
n

k

)

P(E)k(1 − P(E))n−k

(a)
= lim

a→∞

(P(E)Na)k

k!

∞∑

s=0

e−NaN s
a

s!
· (1 − P(E))s

= lim
a→∞

(P(E)Na)k

k!
exp(−NaP(E))

= exp(−c4)ck4/k!, (3.35)

where (a) is obtained on using the substitution n−k = s, and c4 = lima→∞NaP(E) =

1/(Γ(1 + 2/γ)Γ(1 − 2/γ)Θ2/γ). �

Therefore, the cardinality of the transmitting set, NT , is distributed as a Poisson

random variable with mean c4, and is, surprisingly, independent of λ and p. Because

of the homogeneity in the nodal arrangement, the size of each node’s transmitting

set obeys the same statistics. Fig. 3.10 plots the theoretic expected size of the

transmitting set N̄T for different threshold values at various PLE values.
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Figure 3.10. The mean number of elements in the transmitting set versus γ for
different SIR threshold values.

Comparing the empirical mean cardinality of the transmitting set to c4, γ can

be estimated using a look-up table. Alternatively, we may use a differential method

where we measure the mean cardinalities of the transmitting sets for two different

values of Θ, Θ1 and Θ2. Denote the mean transmitting set sizes corresponding to

the two values of Θ as N̄1
T and N̄2

T . Theoretically, we obtain

N̄1
T

N̄2
T

=

(
Θ2

Θ1

)2/γ

,

giving us an unbiased estimate as

γ̂ =
2 ln(Θ2/Θ1)

ln(N̄1
T/N̄

2
T )
. (3.36)

Fig. 3.11 plots the histogram of the estimated PLE values when the actual value

is γ = 4. The estimation error for this scheme also seems approximately Gaussian.
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Figure 3.11. Histogram of γ̂ for the estimation algorithm based on the cardinality
of the transmitting set. Error variance ≈ 0.03.

We now analytically evaluate the Crámer-Rao lower bound for an unbiased es-

timate of NT . From (3.35), we have

ln f(NT = k; γ) = −c4 + k ln(c4) − ln(k!) (3.37)

The Fisher information for an unbiased estimate of γ is then given by

J(γ) = ENT

[

− ∂2

∂γ2
ln f(NT ; γ)

]

=
1

c4

(
∂c4
∂γ

)2

=
4
[

ψ(1 − 2
γ
) − ψ(1 + 2

γ
) − ln(Θ)

]2

γ4Γ(1 + 2
γ
)Γ(1 − 2

γ
)Θ

2

γ

, (3.38)

where ψ(x) represents the digamma function4 and has the integral representation

ψ(x) =

∫ ∞

0

(
e−t

t
− e−xt

1 − e−t

)

dt.

4Mathematica: PolyGamma[x]
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We have CRLB = 1/J(γ).

Error analysis when the fading distribution is not necessarily Rayleigh :

The method based on the cardinality of the transmitting set assumes that chan-

nel is Rayleigh-faded. It is interesting to see how large the error is when the true

value of m is not 1. We now derive some analytical results showing the dependence

of the algorithm on the fading parameter m. Specifically, we determine the distri-

bution of NT for integer values of m and comment on its effect on the estimation

algorithm.

When G is a Nakagami-m distributed variable, we can generalize (3.33) to obtain

the success probability for a transceiver pair at an arbitrary distance R units apart

as

ps(R) =
m−1∑

k=0

exp(−c3R2) (c3R
2)

k

k!

(
2

γ

)k

, m ∈ Z
+. (3.39)

Using this, we obtain

P(E) = ER[ps(R) | R]

=
2π

πa2

∫ a

0

m−1∑

k=0

exp(−c3r2)r2k

k!

(
2c3
γ

)k

rdr

=
1

a2

m−1∑

k=0

(
2c3
γ

)k ∫ a

0

exp(−c3r2)

k!
r2k2rdr

(a)
=

1

a2c3

m−1∑

k=0

(
2

γ

)k
1

k!

∫ c3a2

0

tk exp(−t)dt

(b)
=

1

a2c3

m−1∑

k=0

(
2

γ

)k
1

k!

(
1 − Γ(k + 1, c3a

2)
)
, (3.40)

where (a) is obtained by a simple change of variables (t = c3r
2) and (b) using

the definition of the incomplete gamma function. Following the steps used in the

derivation of (3.35), the cardinality of the transmitting set is seen to be Poisson

61



distributed with mean c5, where

c5 = lim
a→∞

NaP(E)

(a)
=

λpπ

c3

m−1∑

k=0

(
2

γ

)k

=
λpπ

c3

1 −
(

2
γ

)m

1 − 2
γ

(b)
=

Γ(m)
(

1 −
(

2
γ

)m)

Γ(m+ 2
γ
)Γ(2 − 2

γ
)Θ2/γ

. (3.41)

Here, (a) is obtained using the fact that limz→∞ Γ(a, z) = Γ(a) and (b) using the

definition of c3 and [15, Eqn. 17]

E[G2/γ ] =
Γ(m+ 2/γ)

Γ(m)m2/γ
.

The analytical value of the mean cardinality of the transmitting set when m ∈ Z
+

is plotted in Fig. 3.12 for two different thresholds.

From (3.41), we see that N̄T is inversely proportional to Θ2/γ . Therefore, if we

use a differential method to estimate γ, we still obtain

N̄1
T

N̄2
T

=

(
Θ2

Θ1

)2/γ

.

Remarkably, when m is a positive integer, it has no effect on the performance of the

algorithm. Based on this observation, we surmise that the behavior of the error is

independent of m, even when m ∈ R. Fig. 3.13 plots the empirical MSE for the

differential method, taken over several different network realizations versus m for

various PLE values. As expected, the MSE is insensitive to the fading parameter.

3.6 Comparison of the Algorithms

In this section, we compare the features of the three algorithms for PLE estima-

tion described in the earlier section. A common characteristic of all the algorithms
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Figure 3.12. The expected cardinality of the transmitting set for various values of
γ.

are that the estimation errors are (roughly) Gaussian, since the histogram of the

errors fit well into normal distribution curves. Furthermore, the differential algo-

rithms are seen to be accurate and do not require estimates of λ or the contention

probability p.

1) The method that predicts γ using the knowledge of the interference moments

can also be used to estimate p and m. It is seen to work well for a wide range

of system parameters and importantly is accurate independent of the value of m.

Though it is fairly simple in principle, it invokes a scheduling procedure for tak-

ing measurements, since all the nodes inside the guard zone are required to stop

transmitting.

2) The scheme that estimates γ upon calculating outage probabilities does not
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Figure 3.13. The value of the MSE versus m for different PLEs.

need a guard zone to be imposed, but requires a transmitter that originally did not

belong to the process to be placed at unit distance from the receiver. Moreover,

it is formalized only for the Rayleigh fading case (m = 1). The error is seen to

be high when fading is severe (values of m lower than 1), and more so when the

PLE is high. Also, this algorithm is convenient to use only when the network is

interference-limited, i.e., the noise level is considerably lower than the interference

power.

3) The algorithm based on the connectivity properties of the PPP does not need

any node location information or the imposition of a guard zone around the nodes.

Furthermore, it is robust in the sense that it performs independently of the value of

the fading parameter m. Like the previous algorithm, it is, however, based on the

condition that the system is interference-limited.
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We now address a couple of performance issues related to the rate of convergence

of the algorithms. First, the success of these methods is critically determined by

the number of survey points N to be taken. A small value of N will result in

low accuracy while a large value of N will result in an expensive survey process

with many of the survey points giving little benefit. The second aspect is related

to centralized versus distributed information processing. Specifically, the efficiency

of these techniques relies on how the nodes that take measurements are chosen.

Consider the two extreme cases where nodes 1, 2, . . .N can be chosen in a random

fashion or as subsequent nearest neighbors. In the latter method, the first node

relays its measurement information to its nearest neighbor which then passes this

on along with its own measured value, to its nearest neighbor other than the first

node, and information is propagated in this manner. If nodes are chosen this way

in a local fashion, the measurements will be correlated and the algorithm takes a

long time to converge. On the other hand, choosing nodes randomly may result

in choosing nodes sufficiently far apart but will also incur a lot of overhead when

information needs to be exchanged between nodes or relayed to a central server or

a fusion center.

Fig. 3.14 compares the performance of the three algorithms. Here, R refers

to the centralized computing scheme where measurements are taken at randomly

picked nodes and relayed to the central server, while NN refers to the distributed

algorithm where measurements are passed over to subsequent nearest neighbors.

From the plot, we see that the algorithm based on the interference moments clearly

has the lowest MSE. Also, for the first two schemes, choosing randomly located

nodes for measurements leads to a much faster convergence than when choosing

subsequent nearest neighbors. However, for the method based on the cardinality

of the transmitting set, the order in which nodes are picked does not have a huge
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impact on its convergence rate.
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Figure 3.14. Comparison of the MSE performance of the three algorithms.

3.7 Chapter Summary

In wireless systems, the value of the PLE is critical but not known a priori,

thus an accurate estimate is essential for the analysis and design of systems. We

offer a fresh look at the issue of PLE estimation in a large wireless network, by

taking into account Nakagami-m fading, the underlying node distribution and the

network interference. Nodes are assumed to be arranged as a homogeneous PPP

on the plane and the channel access scheme is slotted ALOHA. For such a system,

this chapter describes three separate algorithms for PLE estimation. Simulation

results are provided to demonstrate their performance and quantify the estimation

errors. For each of the algorithms, we find that the estimation error is approximately
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Gaussian. Comparing the algorithms, we see that the one that is based on the

interference moments performs the best in terms of minimizing the MSE. We also

provide methods to infer the intensity of the PPP and evaluate Crámer-Rao lower

bounds on the MSE.
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CHAPTER 4

SUMMARY AND CONCLUDING REMARKS

This thesis provides an analytical characterization of the interference in a wireless

network with uniformly randomly distributed nodes. Applications include evaluat-

ing the network outage performance and estimating the path loss exponent of the

channel, based on the properties of the interference.

It is a fact that taking interference into account for modeling wireless networks

often makes the analysis intractable. It is for this reason that the modeling of

interference has been studied for very few cases of the nodal distribution such as the

PPP and the Poisson clustered process. In this work, we characterize the interference

in a network where the nodes are distributed as a BPP. Based on the shot noise

framework, a closed-form analytical expression for the MGF of the interference is

obtained. We also study the outage performance of the network and conclude that

using the Poisson network model in analyses provides an overly optimistic estimate of

the network’s performance when the number of interferers is small and the threshold

Θ is high.

As an important application, we offer a novel look at the issue of PLE estimation

in a large wireless network, by taking into account Nakagami-m fading, the PPP

model and the network interference. In wireless systems, the value of the PLE is

often not known a priori and thus an accurate estimate is crucial for the analysis

and design of systems. The thesis describes three algorithms for path loss exponent
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estimation, each based on a different network characteristic. Simulation results

are provided to demonstrate their performance and quantify the estimation errors.

Comparing the algorithms, we see that the one that is based on the interference

moments performs the best in terms of minimizing the MSE.

Finally, we remark that in reality, the PLE value changes depending on the

terrain category and the environmental conditions, and hence cannot be assumed

to be a constant over the entire network. However, our algorithms are still useful

since they can be used for obtaining local estimates, based on measurements taken

over neighborhoods. For cases where the channel behavior is different for different

regions of the network, it can be divided into sub-areas with constant γ that are

analyzed separately.
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