The TASEP Applied to the Throughput and Delay Analysis of Line Networks

Sunil Srinivasa and Martin Haenggi

Network Communications and Information Processing (NCIP) Lab Department of Electrical Engineering University of Notre Dame

July 26-27, 2007

Sunil Srinivasa and Martin Haenggi

University of Notre Dame

ITMANET PI MEETING 2007

- Draw an analogy between the totally asymmetric simple exclusion process (TASEP) and simple multihop line networks.
- Tap into the rich theory of TASEP and its results to analyze
 - Steady state configurations and their probabilities.
 - Dynamic behavior of the multihop line network.
 - Characterize the throughput-delay-reliability tradeoff.

A Simple Buffering Scheme for Line Networks

- Buffering is pushed back to the source, while relay nodes are essentially bufferless (have buffer sizes of unity).
- Nodes do not accept incoming packets if their buffer is already full.
 - Simple way to prevent packets from getting too close.
 - Self-organization :
 - Transmitting nodes are at least two hops apart.
 - The exclusion principe regulates the traffic injected in a backpressure-like manner.
- Single-buffer multihop networks \Leftrightarrow TASEP.

- A topic in statistical mechanics.
- Used to describe the dynamics of self-driven systems with several interacting particles.
- Applied in problems such as
 - Traffic flow modeling.
 - Kinetics of bipolymerization.
 - Stock market fluctuations.
- Regarded as a paradigm for non-equilibrium systems.

- The source node is numbered 0 and there are N relay nodes.
- Configuration of the sites : $\tau_i \in \{0,1\}$ occupied or not.
- Hopping between sites is possible only if the configuration $\{\tau_i,\tau_{i+1}\}$ is $\{1,0\}.$

A snapshot of the TASEP system model along with the hopping probabilities. Shaded circles indicate occupied sites.

• Exclusion principle creates a particle-hole duality.

A simple MAC scheme in Line Networks

IDEA :

The actual source is connected to a flow regulator.

- p_s : Channel success probabilities.
- TASEP with random sequential update.
 - $\bullet\,$ At each time step, a site is randomly picked w.p. 1/(N+1) and hopping is performed on it.

- Assume that the TASEP source buffer is always non-empty.
- Use the matrix product ansatz (MPA) as an analysis tool.
- Steady state occupancies :
 - Fraction of time each site is occupied at steady state.
 - Queueing theory : utilization factor of the server.

$$\langle \tau_i \rangle_N = \frac{1}{2} + \frac{1}{4} \frac{(2i)!}{(i!)^2} \frac{(N!)^2}{(2N+1)!} \frac{(2N-2i+2)!}{[(N-i+1)!]^2} (N-2i+1).$$

Steady State Analysis (Contd.)

The steady state occupancies are independent of p_s . However, lower the value of p_s , longer it takes to get to steady state.

- Steady State :
 - Delay at the TASEP source: $D_0 \sim \text{Geo}\left(\frac{p_s(1-\langle \tau_1 \rangle)}{(N+1)}\right)$.
 - Delay at the relay nodes: $D_i \sim \text{Geo}\left(\frac{p_s(1-\langle \tau_{i+1} \rangle)}{N+1}\right)$.
 - Delay at the final relay node: $D_N \sim Geo(\frac{p_s}{N+1})$.
 - Mean e2e delay:

$$\mathbb{E}[D_{e2e}] = \frac{N+1}{p_s} \left[1 + \sum_{i=1}^{N} \frac{1}{1 - \langle \tau_i \rangle} \right]$$

- First Packet :
 - $D_i \sim \textbf{Geo} \Big(\frac{p_s}{N+1} \Big)$ and are independent.
 - End-to-end delay: Neg. Bino $(N + 1, \frac{p_s}{N+1})$.
- Waiting time in the buffer depends on the source traffic model.

Delay vs Link Reliability

The average end-to-end delay at steady state and the same for the first two transmitted packets.

Sunil Srinivasa and Martin Haenggi

University of Notre Dame

ITMANET PI MEETING 2007

- At steady state, rate of flow of particles over each link is the same.
- Current through link $i=\langle \tau_i(1-\tau_{i+1})\rangle.$
- Using the MPA, the throughput is expressed as

$$\mathsf{T} = \frac{\mathsf{p}_s(\mathsf{N}+1)}{2(2\mathsf{N}+1)}.$$

- Throughput reduces as the system size increases.
- $p_s/4 < T \leqslant p_s/3$.
- Throughput is proportional to the link reliability.

- How do the dynamics of the system change when some links are less reliable than the others ?
- Look at more complex topologies e.g. mesh networks.
- Study delay correlations.
- Relationship to backpressure algorithms ?
- What lies ahead ?
 - Different updating procedures correspond to different MAC schemes.
 - Parallel TASEP \Leftrightarrow ALOHA.
 - Sub-lattice parallel TASEP \Leftrightarrow m-TDMA.
 - How to characterize the optimum spatial reuse ?