Simplified Analysis and Design of MIMO Ad Hoc Networks

Sunil Srinivasa and Martin Haenggi

Network Communications and Information Processing (NCIP) Lab Department of Electrical Engineering University of Notre Dame

Wednesday, November 29, 2006

- An ad hoc network's performance is severely susceptible to path loss, fading and interference.
- Using multiple antennas at each node mitigates the effect of fading.
- However, design of MIMO ad hoc networks becomes a challenging problem, especially as network size increases.
- The 'erristor' framework is useful in characterizing transmissions and leads to simplified analysis and design.

- Introduction to a simple, yet powerful concept: erristor.
- Extend the formalism to multihop MIMO systems.
- How does this help in analyzing/modeling MIMO ad hoc networks ?
- Provide a simple example.
- Superiority of MIMO over SISO systems at high SNR.

- A multihop MIMO network with m antennas at each node.
- With a transmit power P, each antenna transmits at power P/m (No CSI at the transmitters).
- Transmitter aims at diversity maximization.
- Channel effects path loss (with exponent α) and flat (narrow band) block Rayleigh fading.
- Perfect MAC scheme or light traffic analysis.
- Selection Combining.

Consider a SISO link.

- Transmission is successful if SNR at receiver is greater than Θ .
- The reception (or success) probability $p_{\rm r}$ over a link of distance d at a transmit power P_0 and noise variance N_0 is given by

$$p_r = \exp(-\Theta N_0 / P_0 d^{-\alpha}).$$

• Denote $R := \Theta N_0 / P_0 d^{-\alpha}$ (normalized mean noise-to-signal ratio (NSR)) as an erristor and its value as erristance [†].

[†]M. Haenggi, "Analysis and design of diversity schemes for ad hoc wireless networks," *IEEE J. Selected Areas Commun.*, vol. 23, pp. 19-27, Jan. 2005.

Sunil Srinivasa and Martin Haenggi

University of Notre Dame

Why the name 'erristor' ?

① For $R \ll 1$, $R \approx 1 - p_r$, the packet loss (error) probability.

2 Over a n-hop serial route, the end-to-end reliability is

$$p_{\text{EE}} = \exp(-\sum_{i=1}^{n} R_i) = \exp(-R_{\text{tot}}),$$

where the sum of R_i 's can be replaced by an equivalent R_{tot} . Notice the resistor-like series connection property.

• The erristor formalism permits the mapping of unwieldy probability expressions to a simple circuit-like framework.

Extension of the Erristor Formalism

Consider a MIMO point-to-point link.

• Received power Q at each antenna is a chi-square distributed RV with 2m degrees of freedom and mean $\bar{Q} = P_0 d_{ii}^{-\alpha}$.

$$F_Q(q) = 1 - e^{-(qm/\bar{Q})} \sum_{k=0}^{m-1} \frac{1}{k!} \left(\frac{qm}{\bar{Q}}\right)^k, \quad q \ge 0.$$

- Selection combining strategy picks $S = max\{Q_1, \ldots, Q_n\}$ for decoding.
- Reception probability is given by $Pr[S \ge \Theta N_0]$.

$$p_r = 1 - \left(1 - e^{-\Theta N_0 m/\bar{Q}} \sum_{k=0}^{m-1} \frac{1}{k!} \left(\frac{\Theta N_0 m}{\bar{Q}}\right)^k\right)^m$$

Extension of the Erristor Formalism

• With R as the normalized mean NSR, we get

$$p_r = 1 - \left(e^{-R\mathfrak{m}}\sum_{k=\mathfrak{m}}^{\infty}\frac{1}{k!}(R\mathfrak{m})^k\right)^m.$$

Notice the contrast in asymptotic behavior as one set of curves approach 1, while the others tend to 0.

Sunil Srinivasa and Martin Haenggi

University of Notre Dame

Asymptotic Behavior

• $\mathsf{Poisson}(\lambda) \approx \mathcal{N}(\lambda, \lambda)$ for $\lambda \gg 1$

$$p_{\rm r} \approx 1 - \left(\frac{1}{\sqrt{(2\pi Rm)}} \int_m^\infty e^{-\frac{(k-Rm)^2}{2Rm}} dk\right)^m.$$

• Writing in terms of the Q-function,

$$p_{\rm r} \approx 1 - \left(Q\!\left(\frac{m(1-R)}{\sqrt{Rm}} \right) \right)^m \! . \label{eq:pr_r_r}$$

• To study the behavior as $m \to \infty,$ use

$$Q(x)\leqslant \frac{1}{x\sqrt{2\pi}}e^{-x^2/2},\quad x>0.$$

Asymptotic Behavior

•
$$R < 1$$

 $p_r \gtrsim 1 - \left(\frac{\sqrt{R}}{(1-R)\sqrt{2m\pi}}\right)^m e^{-m^2(1-R)^2/2R}$.
 $p_r \rightarrow 1 \text{ as } m \rightarrow \infty$
• $R > 1$

$$\mathfrak{p}_{r} \lessapprox 1 - \left(1 - \frac{\sqrt{R}}{(R-1)\sqrt{2m\pi}} e^{-\mathfrak{m}(R-1)^{2}/2R}\right)^{\mathfrak{m}}.$$

 $p_r \to 0 \text{ as } m \to \infty$

• *Phase transition* occurs at R = 1 (average SNR of Θ).

Markov Approximation

• Simplify the cumbersome expression using the Markov tail approximation to obtain $p_r \ge 1 - R^m$ (See Figure).

The Markov approximation for p_r is tight at high SNR values. • $p_r \approx e^{-R^m}$ at high SNR or large m. • R^m is the erristance for the MIMO link.

The design problem:

How to choose link erristances such that p_{EE} is at least at the desired level p_{D} ?

- Requires knowledge of erristor equivalents.

Series Connection (Multihop Connection)

- Reception probabilities multiply; $p_{EE} = e^{-\sum_{i=1}^{n} R_i^m}$.
- Equivalent erristance is $R_{tot} = \sum_{i=1}^{n} R_i^{m}$.

Parallel Connection

- Time and path diversity, cooperative and implicit transmissions.
- Equivalent erristance is bounded as $\frac{R_{tot}}{R_{tot}} \lesssim \prod_{i=1}^{n} R_i^m$ [†].

Parallel and series equivalents help simplifying most networks.

[†]M. Haenggi, "Analysis and design of diversity schemes for ad hoc wireless networks," *IEEE J. Selected Areas Commun.*, vol. 23, pp. 19-27, Jan. 2005.

A Three Hop MIMO Network

- Each node has m antennas.
- Node 1 transmits its packet twice, once to node 2 and once over the link $1 \rightarrow 3$.
- $\bullet\,$ Node 2 overhears transmission from $1 \rightarrow 3,$ and implicitly knows 1's packet.
- Requirement : $p_D = 0.9 \Leftrightarrow R_{tot} = -\ln(p_{EE}) \leqslant 0.105$.

A Three Hop MIMO Network

Recall that R is inversely proportional to P, $d^{-\alpha}$.

Scenario 1: Each node expends the same net transmission power.

•
$$R_{12,i} = 2^{-\alpha} R_{13}$$
 since $d_{13} = 2d_{12}$.

• $R_{01} = R_{23} = R(say)$, because $d_{01} = d_{23}$.

• Node 1 needs to transmit at the same power

$$\frac{\mathrm{d}^{\alpha}}{\mathrm{R}} = \frac{\mathrm{d}^{\alpha}}{\mathrm{R}_{12}} + \frac{(\mathrm{2d})^{\alpha}}{\mathrm{R}_{13}}.$$

• Possible setting: $R_{13} = 2^{\alpha}R_{12}$, which gives $R_{12} = 2R$.

A Three Hop MIMO Network

• $R_{tot} = R^m + ((2R)^{2m} + R^m)(2^{\alpha}2R)^m \le 0.105$. At $\alpha = 3.5$, R = 0.048 is a solution for m = 1. For m = 3, R = 0.143 ($\approx 67\%$ reduction in power).

Scenario 2: Node 2 exhausts its battery.

- Link $1 \rightarrow 2$ becomes useless.
- The erristor network consists of just R_{01}^m and R_{13}^m in series.
- Resources need to be reallocated to these nodes only.

Sunil Srinivasa and Martin Haenggi

University of Notre Dame

Comparison of MIMO with SISO schemes

- Apply the erristor framework to compare the following transmission schemes.
 - a) The MIMO multihop scheme.
 - b) The SISO multihop scheme.
 - c) The SISO system with retransmission involved.
- \bullet Assume same number of total transmissions and the same $p_{\rm D}$ for each scheme.
- $\bullet\,$ Study the normalized energy consumption (per packet sent) and how it varies depending on $p_D.$

Sunil Srinivasa and Martin Haenggi

Comparison of MIMO with SISO schemes

 With n transmitting nodes and m outgoing paths from each node, the normalized energy consumption (per packet) is

$$E_{tot} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{d_{ij}^{\alpha}}{R_{ij}}.$$

a) MIMO multihop: $E_{tot} = mnd^{\alpha} \left(\frac{1}{n}\right)^{\alpha} \left(\frac{n}{R_{tot}}\right)^{\frac{1}{m}}.$ b) SISO multihop: $E'_{tot} = mnd^{\alpha} \left(\frac{1}{mn}\right)^{\alpha} \frac{mn}{R_{tot}}.$ c) SISO (retransmission): $E''_{tot} = mnd^{\alpha} \left(\frac{1}{R_{tot}}\right)^{\frac{1}{mn}}.$ Consider the case m = 2and n = 2.

$$\frac{E_{tot}}{E'_{tot}} = 2^{\alpha - \frac{3}{2}} R_{tot}^{\frac{1}{2}}.$$

MIMO is more energy efficient than the SISO multihop scheme if

$$\begin{split} R_{tot} &< 2^{3-2\alpha} \Leftrightarrow \\ p_D &> e^{-2^{(3-2\alpha)}} \end{split}$$

Substantial energy gains are observed as $p_D \rightarrow 1$.

MIMO vs SISO Time Diversity

$$\frac{E_{tot}}{E_{tot}''} = 2^{-\alpha + \frac{1}{2}} R_{tot}^{-\frac{1}{4}}.$$

MIMO is better than the SISO time diversity scheme when

$$\begin{aligned} R_{tot} &> 2^{2-4\alpha} \Leftrightarrow \\ p_D &< e^{-2^{(2-4\alpha)}}. \end{aligned}$$

For practical purposes, MIMO is more energy efficient.

- The erristor concept greatly simplifies analysis and design problems for MIMO ad hoc networks employing selection combining.
- Resource (re)allocation problems can be reduced to simple polynomial equations.
- Based on the erristor framework, MIMO is known to outperform SISO, especially at high SNR values.
- Asymptotic behavior of the MIMO network is studied, and a critical value of SNR at which phase transition occurs is calculated.