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Abstract

With novel features such as web browsing and online gaming being introduced into

present-day mobiles, the downlink is definitely expected to carry significant traffic

volumes in the near future. Even though orthogonal spreading codes are being used

to distinguish between different users, multipath propagation and fading effects tend

to destroy this orthogonality. The key idea in this report is to equalize the channel

at the mobile receiver, thus approximately restoring the orthogonality among the

different users and reducing the interference.

First, a theoretical model of the linear MMSE equalizer is presented. Linear

Equalizers are known to work well for stationary channels. However, in most cases,

the channel is time-varying in nature. In such cases, we need to incorporate adaptive

equalization. To accommodate fading effects into the equalizer model, we present

the adaptive MMSE equalizer. The adaptive equalizer is based on two standard

converging algorithms - Least mean Squares and Recursive Least Squares.

The performance of the MMSE equalizer is compared against the performance

of the RAKE filter in order to draw conclusions on its improvement in performance

over the matched filter-based detectors. For stationary channels, the linear MMSE

equalizer is shown to perform far superior compared to the RAKE receiver. The adap-

tive MMSE equalizer is first tested on static channels. Upon showing a considerable

improvement in performance over the RAKE receiver, we test the same on fading

channels, and the simulation studies prove that for low to moderate speeds (of upto

50 km/hr), adaptive equalization performs better compared to the RAKE receiver.
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CHAPTER 1

Introduction

1.1 Motivation

3G Wideband CDMA (3G W-CDMA), the third generation cellular standard, is based

on direct sequence (DS) code division multiple access (CDMA), wherein each of the

users uses the entire bandwidth allotted to him, but different users employ different

spreading sequences. Each of the spreading code used is orthogonal with every other

code, so that any user’s signal does not interfere with the other users’ signals. The

primary traffic on present day cellular networks is voice and messages, so that the

forward link or downlink (base-to-mobile) and the reverse link or uplink (mobile-to-

base) carry similar traffic. With advanced features such as web browsing and online

gaming being introduced in present-day mobiles, the downlink traffic is expected to

increase significantly. The downlink is therefore expected to be the bottleneck in

traditional cellular architectures, which currently allocate equal bandwidth resources

to both the uplink and downlink. Even for the current cellular applications, the

uplink has several advantages over the downlink: The base station transmits at a

relatively higher power to mobiles that are far away, when compared to mobiles that

are closer to the base station. Strong multipath components from such base stations

could seriously impact the received signals of these closer mobiles. Thus, downlink

power control could possibly lead to a near-far problem. Besides, the technology

and receiver processing involved is definitely more sophisticated at the base station

when than in a mobile. In view of enhancing the downlink, equalization appears to

be a very attractive and convenient method, since the small number of interfering

sources (the neighboring stations), together with the information available from the

pilot signal, present some practical opportunities for improvement in performance.

The base station transmits the sum of the signals allotted for the different mobiles

in the cell, with orthogonal spreading sequences assigned to different mobiles (users).

The downlink is designed to be free of intra-cell interference under ideal conditions.

However, the multipath propagation channel has a time-dispersive effect which de-



stroys the orthogonality among user codes, substantially degrading the performance

of the matched filter based detectors. In the case of non-stationary channel condi-

tions, fading effects also come into play. The transmitted signal arrives at the receiver

from different paths with randomly time-varying nature. The mobility of the user also

contributes significantly to the time-varying nature of the channel. This results in

amplitude variations in the received signal, usually referred to as fading. Multipath

fading is a significant limiting factor in the performance of existing mobile commu-

nication systems. The usual methods of multipath mitigation in CDMA (e.g.“blind

minimum output energy technique”) rely on received signal cyclostationarity. In this

application however, the scrambling code destroys the cyclostationarity and so an

alternative means of multipath mitigation and interference cancellation is necessary.

The key idea in this report is to equalize the channel at the mobile receiver, thus

approximately restoring the orthogonality among the different users and reducing the

interference.

In a given chip interval, the base station transmits the sum of the chips destined

for each user, together with the chip for the pilot sequence. All elements in this sum

observe the same channel, so that, a linear equalizer for the pilot sequence works for

the desired user as well. The pilot sequence can thus play the role of a perpetual

training sequence for adaptive equalization. The adaptation is based on the linear

MMSE criterion. The idea of restoring orthogonality on the downlink through the use

of equalization is especially useful since it leads to an adaptive receiver performing

interference suppression even for CDMA systems with no spreading code periodicities.

The results of the MMSE adaptive equalizer is compared against that of the RAKE

filter, in order to draw conclusions on the performance gain achieved by using the

equalizer. Unlike the RAKE filter, which can be viewed as a matched filter, the

MMSE equalizer is based on the exact computation of the MMSE solution and hence

does not require any prior estimation of the channel parameters. In particular, the

adaptive equalizer requires only coarse timing information in order to capture the

energy from the desired chip in its observation window. Provided that the equalizer

spans a sufficiently long observation window, the equalizer is robust against timing

uncertainty and is capable of tracking timing variations.
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1.2 Related Work

The idea of equalizing the downlink channel for the purpose of restoring orthogonal-

ity of the user spreading sequences was first proposed in [12]. A block equalizer is

developed for a hybrid time division CDMA system. Equalization of the downlink

for a DS-CDMA system was first independently introduced in [13], [14] and [15]. In

[13], an adaptive MMSE equalizer using the pilot signal for tracking is presented,

while [14] considers the zero-forcing equalizer. In [15], an MMSE solution for the

downlink equalizer of a CDMA system is computed. The use of orthogonal spreading

sequences, however, is not considered. An adaptive algorithm not requiring the pilot

training sequence is presented in [16].

1.3 Organization of the Report

In chapter 2, some preliminary concepts in 3G W-CDMA transmission and reception

are discussed. An insight into the Jakes model and the RAKE receiver is dealt with.

Chapter 3 deals with the Linear MMSE Equalizer. A theoretical model for the MMSE

equalizer is derived. Chapter 4 is fully dedicated to the Adaptive MMSE Equalizer.

Convergence algorithms such as LMS and RLS are described and mathematically

analyzed in detail. It is also seen as to how these algorithms could be applied to the

case of an equalizer. In chapter 5, we present the simulation results and summarize

the work done. We also discuss the further avenues that need to be explored.
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CHAPTER 2

Preliminaries

2.1 3G W-CDMA (UMTS)

The Universal Mobile Telecommunications System (UMTS) is a visionary air inter-

face standard that has evolved since late 1996 under the auspices of the European

Telecommunications Standards Institute (ETSI). Around the turn of the century,

several competing W-CDMA proposals agreed to merge into a single W-CDMA stan-

dard, which is now called UMTS. 3G systems promise unparalleled wireless access in

ways that have never been possible before. Multi-megabit Internet access, communi-

cations using Voice over Internet Protocol (VoIP), voice-activated calls, unparalleled

network capacity, and ubiquitous ”always-on” access are just some of the advantages

being touted by 3G developers.

The 3G W-CDMA standard has been designed for ”always-on” packet-based wire-

less service, so that computers, entertainment devices and telephones may all share

the same wireless network and be connected to the Internet, anytime, anywhere. W-

CDMA will support high packet data rates, thereby allowing high quality data, mul-

timedia, streaming audio, streaming video and broadcast-type services to consumers.

W-CDMA provides public and private network features, as well as videoconferencing

and virtual home entertainment (VHE).

W-CDMA requires a minimum spectrum allocation of 5 MHz, which is an important

distinction from the other 3G standards. W-CDMA employs variable/selectable direct

sequence spread spectrum chip rates that can exceed 16 megachips per second per

user. With W-CDMA data rates from as low as 8 kbps to as high as 2 Mbps will

be carried simultaneously on a single W-CDMA 5 MHz radio channel, and each

channel will be able to support between 100 and 350 simultaneous voice calls at once,

depending on antenna sectoring, propagation conditions, user velocity, and antenna

polarizations.



2.2 HSDPA

High Speed Downlink Packet Access is a packet-based data service in W-CDMA

downlink with data transmission up to 14.4 Mbps (and approximately twice this rate

for MIMO systems) over a 5MHz bandwidth in W-CDMA downlink. Some of the

features of HSDPA include Adaptive Modulation and Coding (AMC), Multiple-Input

Multiple-Output (MIMO), Hybrid Automatic Request (HARQ), fast cell search, and

advanced receiver design.

It is a concept within W-CDMA specifications whose main target is to increase user

peak data rates and quality of service, and to generally improve spectral efficiency

for downlink asymmetrical and bursty packet data services. When implemented, the

HSDPA concept can co-exist on the same carrier as the Release’99 W-CDMA services,

enabling a smooth and cost-efficient introduction of HSDPA into existing W-CDMA

networks. Furthermore, a user can download packet-data over HSDPA, while at the

same time having a speech call.

HSDPA is based on W-CDMA evolution, standardized as part of 3GPP Release

5 W-CDMA specifications. The new adaptive modulation and coding method of

HSDPA, a fast scheduling function and fast retransmissions greatly improve its peak

data rate and throughput, which enhances spectral efficiency. In addition to these

benefits, users will perceive faster connections to services though shorter round trip

times. As a result of these enhancements, operators using HSDPA will be able to

support considerably higher numbers of high data rate users on a single radio carrier

than is possible with any existing 3G technology. Information regarding 3G-CDMA

and HSDPA is taken from [1].

2.3 System Model

2.3.1 Downlink Channel Model

The downlink channel model assumed consists of 3 main channels - CPICH, DPCH,

HS-PDSCH and an interference simulator, OCNS. In the next few sections, we will

briefly deal with each of these.
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2.3.1.1 Common Pilot Channel (CPICH)

The CPICH is a fixed rate (30 kbps, SF = 256) downlink physical channel that

carries a pre-defined bit sequence. The CPICH is broadcast over the entire cell. The

pre-defined bit sequence as specified by the 3GPP standards [7] is 1 + i. The same

channelization code(SF = 256) is always used for the CPICH. Each radio frame is 10

ms long, each frame comprising 15 slots. Figure 2.1 shows the frame structure of the

CPICH. The pilot channel plays the role of a perpetual training sequence for tracking

the channel.

Figure 2.1: Frame Structure of the CPICH. [7]

2.3.1.2 Dedicated Physical Channel (DPCH)

The downlink DPCH can be seen as a time-multiplex of a downlink DPDCH and

a downlink DPCCH. Figure 2.2 shows the frame structure of the downlink DPCH.

Each frame of length 10 ms is split into 15 slots, each of length Tslot = 2560 chips.

The parameter k in the Figure 2.2 determines the total number of bits per down-

link DPCH slot. It is related to the spreading factor SF of the physical channel as

SF = 512
2k . SF might thus range from 512 down to 4. The exact number of bits

of the different downlink DPCH fields (Npilot, NTPC , NTFCI , Ndata1, Ndata2) can vary

depending on the spreading factor used. There are basically two types of DPCH -

those that include TFCI (Transport Format Combination Indicator) (e.g. for several

simultaneous services) and those that do not include TFCI (e.g. for fixed-rate ser-

vices). It is the UTRAN (UMTS Terrestrial Radio Access Network) that determines

if a TFCI should be transmitted and if it is mandatory for all UEs (User Equipments)

to support the use of TFCI in the downlink.

6



Figure 2.2: Frame Structure of the DPCH. [7]

2.3.1.3 High Speed Physical Downlink Shared Channel (HS-PDSCH)

The HS- PDSCH is used to carry the High Speed Downlink Shared Channel (HS-

DSCH).

A HS-PDSCH corresponds to one channelization code of fixed spreading factor

SF = 16 from the set of channelization codes reserved for HS-DSCH transmission.

Multi-code transmission is allowed, which translates to UE being assigned multiple

channelization codes in the same HS-PDSCH subframe, depending on its UE ca-

pability. Figure 2.3 shows the slot and subframe structure of the HS-PDSCH. An

HS-PDSCH may use QPSK or 16QAM modulation symbols. In figure 2.3, M is the

number of bits per modulation symbols i.e. M = 2 for QPSK and M = 4 for 16QAM.

Figure 2.3: Subframe Structure of the HS-PDSCH. [7]
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2.3.1.4 Orthogonal Channel Noise Simulator (OCNS)

It is a mechanism used to simulate the users or control signals on the other orthogonal

channels of a downlink link. OCNS interference consists of 6 dedicated data channels

as specified in Table 2.1. The selected codes are designed to have a single length-16

parent code.

Selected Channelization Relative Power Level

Codes at SF=128 Setting (dB)

2 -6

3 -8

4 -8

5 -10

6 -7

7 -9

Table 2.1: OCNS definition for HSDPA receiver testing. [6]

2.3.1.5 Downlink Physical Channels connection set-up.

The downlink physical channels for HSDPA receiver testing for Single Link perfor-

mance is given in Table 2.2

Physical Channel Relative Setting of Ec SF

CPICH -10 dB 256

DPCH -10 dB 128

HS-PDSCH Test Specific 16

OCNS Necessary power such

that total transmit

power spectral density

(Ior) adds to one.

128

Table 2.2: Downlink physical channels set-up. [6]
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2.3.1.6 Timing relationship between Physical Channels.

The CPICH is used as the timing reference for all the physical channels. The DPCH

is aligned exactly with the CPICH. The HS-PDSCH is transmitted at an offset of

τ = 1.33ms (2 time slots) or 5120 chips relative to the CPICH. A detailed description

of the physical channels, their mapping and timing relationships can be found in [6]

and [7].

2.3.2 Scrambling code

The scrambling code sequences are constructed by combining two real sequences into

a complex sequence [8]. Each of the two real sequences are constructed as the posi-

tion wise modulo 2 sum of 38400 chip segments of two binary m-sequences generated

by means of two generator polynomials of degree 18. The resulting sequences thus

constitute segments of a set of Gold sequences. The scrambling codes are repeated

for every 10 ms radio frame. Let x and y be the two sequences respectively. The x

sequence is constructed using the primitive (over GF(2)) polynomial 1 + X7 + X18.

The y sequence is constructed using the polynomial 1 + X5 + X7 + X10 + X18.

The m-sequences are constructed as follows :

Initial conditions:

- x is constructed with x(0) = 1, x(1) = x(2) = . . . = x(16) = x(17) = 0.

- y is constructed with y(0) = y(1) = . . . = y(16) = y(17) = 0

Recursive definition of subsequent symbols:

- x(i + 18) = [x(i + 7) + x(i)]modulo(2), i = 0 . . . 218 − 2

- y(i + 18) = [y(i + 10) + y(i + 7) + y(i + 5) + y(i)]modulo(2), i = 0 . . . 218 − 2

The nth Gold sequence zn, n = 0, 1, 2 . . . 218 − 2 is then defined as:

zn(i) = [x(i + n)modulo(218 − 1) + y(i)]modulo(2), i = 0 . . . 218 − 2 (2.1)

These binary sequences are converted to real-valued sequences by the following trans-

formation:

- Zn(i) = 1 − 2zn(i)

Finally, the nth complex scrambling code is defined as:

Sdl,n = Zn(i) + j(Zn(i + 131072)modulo(218 − 1)), i = 0, 1, . . . 38399 (2.2)

The pattern from phase 0 up to the phase of 38399 is repeated.

9



2.3.3 Pulse shaping

The transmit and receive pulse shaping filters are root raised cosines with roll-off

α = 0.22 [6].

RRC =
sin( πt

Tc
)(1 − α) + 4αt

Tc
cos( πt

Tc
)(1 + α)

πt
Tc

(1 − 4αt
Tc

)2
(2.3)

where the roll-off factor α = 0.22 and the chip duration is

Tc =
1

chiprate
(2.4)

2.3.4 The Jakes Model

The Jakes fading model [9] is a deterministic method for simulating time-correlated

Rayleigh fading waveforms and is still widely used today. The model assumes that

N equal-strength rays arrive at a moving receiver with uniformly distributed arrival

angles αn, such that ray n experiences a Doppler shift ωn = ωM cos(αn), where

ωM = 2πf v
c

is the maximum Doppler shift, v is the vehicle speed, f is the carrier

frequency and c, the speed of light.

Using αn = 2π n
N

, there is a quadrantal symmetry in the magnitude of the Doppler

shift, except for angles 0 and π. As a result, the fading waveform can be modelled

with N0 + 1 complex oscillators, where N0 =
(N

2
−1)

2
. This gives the fading waveform

as

T (t) = K

{
1√
(2)

[cos (α)+i sin (α)] cos (ωM t+θn)+

N0∑
n=1

[cos (βn)+i sin (βn)] cos (ωnt+θn)

}
(2.5)

where K is a normalization constant, α (not the same as αn) and βn are phases, and

θn are initial phases, usually set to zero. Setting α = 0 and β = πn
N0+1

gives zero cross

correlation between the real and imaginary parts of T (t).

To generate multiple uncorrelated waveforms, Jakes [4] suggests using phases θn,j =

βn + 2π (j−1)
(N0+1)

, where j = 1 . . . N0 is the waveform index. However this gives almost

uncorrelated waveforms j and k only when θn,j − θn,k = iπ + π
2
, for some integer

i. Otherwise, the correlation between certain waveform pairs can be significant. A

remedy for this problem is achieved by reformulating the Jakes model in terms of

slightly different arrival angles.

10



To provide quadrantal symmetry for all Doppler shifts, which leads to equal power

oscillators, the following arrival angles are used: αn = 2π (n−0.5)
N

. This leads to the

model:

T (t) =

√
2

N0

{
N0∑
n=1

[cos (βn) + i sin (βn)] cos (ωnt + θn)

}
(2.6)

where N0 = N
4

and the normalization factor
√

2
N0

gives E(T (t)T ∗(t)) = 1.

2.3.5 The RAKE Receiver

In CDMA spread spectrum systems, the chip rate is typically much greater than the

flat-fading bandwidth of the channel. CDMA spreading codes are designed to provide

very low correlation between successive chips. Thus, propagation spread in the radio

channel merely provides multiple versions of the transmitted versions of the signal

at the receiver. if these multipath components are delayed in time by more than a

chip duration, they appear like uncorrelated noise at a CDMA receiver. The spread

spectrum processing gain makes uncorrelated noise negligible after despreading. How-

ever, since there is useful information in the multipath components, CDMA receivers

may combine the time delayed versions of the original signal transmission in order to

improve the SNR at the receiver. The RAKE receiver does exactly this.

It is a matched filter that uses a tap delay line to combine signals arriving over

multipath propagation paths. In general, the RAKE receiver can be viewed as a

filter matched to the convolution of the chip waveform with the channel, followed

by the descrambling and despreading operations. In order to do this, the RAKE

filter assumes that it has perfect knowledge of the channel coefficients and delays.

The RAKE filter consists of several delay-taps (correlators) to separately detect the

multipath components. The output of each tap is then separately weighed and all

such weighed values are summed up to provide a better estimate of the transmitted

signal.
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CHAPTER 3

The Linear MMSE Equalizer

3.1 Introduction

An equalizer is usually a tapped FIR transversal filter, in which current and past

values of the received signal are linearly weighted by the filter coefficients and summed

to produce the output. Equalization compensates for Inter Symbol Interference (ISI)

created by mutipath within time-dispersive channels. Equalization works on the

principle of training and tracking. It is trained first with reference to a pre-known

pilot signal. With the coefficients obtained after the training stage, the equalizer is

used to track the input. [11] discusses equalization in detail.

Equalizers could be of chip-level or symbol-level, depending on whether they di-

rectly estimate chips or symbols respectively. The symbol-level equalizer is preferred

over the other because of two reasons, the first one being that the equalizer would be

implemented using the training signal at a higher SIR (Signal-to-Interference Ratio).

Secondly, it reduces the time of computation and the complexity, since it estimates di-

rectly, the desired user’s symbols instead of chips. Also, two implementations of the

symbol-level equalizer are possible - the pre-despreading and the post-despreading

implementations. For analytical purposes, it is convenient to consider the post-

despreading implementation (see Figure 3.1) of the symbol level equalizer, where

the despreading precedes equalization. The theoretical model of the linear MMSE

equalizer is taken from [5].

Notation used:

- L = L1 + L2 + 1 is the length of the MMSE Equalizer.

- h(1)(n) = [h(1)(M1), h
(1)(M1 + 1), . . . , h(1)(M2)] denotes the impulse response

of the channel. Hence, the impulse response of the channel is assumed to have

finite support on the interval [M1, M2].

- u(1)(n) is the transmitted signal at time n from the base station.

- u(1)(n) = [u(1)(n − L1 − M2), u
(1)(n − L1 − M2 + 1), . . . , u(1)(n + L2 − M1)] is

a vector of dimension L + M2 − M1.



Figure 3.1: Conceptual diagram of the post-despreading implementation of the sym-

bol-level equalizer. [5]

- bk(n) denotes the symbol sequence for mobile k expressed at chip rate. bk(n)

is piecewise constant over symbol interval of length N chips, where N denoted

the processing gain (N=Spreading Factor).

- r(n) = [r(n − L1), . . . , r(n − 1), r(n), r(n + 1), . . . , r(n + L2)] is the received

block of samples used by the equalizer in order to estimate u(1)(n).

- s
(1)
1 is the desired user’s spreading sequence.

- û1
(1)(n) is the MMSE estimate of the desired user’s signal at time n, u

(1)
1 (n)

from the observation r(n).

3.2 Theoretical Model for the MMSE Equalizer

The expression for the MMSE estimate(optimum Wiener filter coefficients) of the

desired user’s signal at time n, û1
(1)(n), from the observation r(n) is given by

û1
(1)(n) = (c(1)(n))Hr(n) (3.1)

where

(c(1)(n)) = (Es{r(n)rH(n)})−1(Es{r(n)u
(1)
1 (n)∗}) (3.2)
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is a vector of dimensions L×1, and Es denotes the expectation over the user symbols

and noise, conditioned on the user spreading sequences.

We first note that the received vector r(n) can be written in matrix form as

r(n) = H(1)u(1)(n) + n(n) (3.3)

where H(1) is a matrix of dimension L × (L + M2 − M1) of the form

H(1) =


h(1)(M2) h(1)(M2 − 1) · · · h(1)(M1) 0 · · · 0

0 h(1)(M2) · · · h(1)(M1 + 1) h(1)(M1) 0 · · ·
...

...
...

...
...

...
...

0 · · · 0 h(1)(M2) · · · h(1)(M1 + 1) h(1)(M1)


and n(n) is the additive white gaussian noise, which accounts for the interference from

distant cells as well as the receiver thermal noise. The vector n also has dimensions

L × 1.

Let the length L vector µ
(1)
1 (n) be defined as

µ
(1)
1 (n) ≡ Es[r(n)(u

(1)
1 (n))∗]

If the user symbols are independent and identically distributed, so that

E[bk(l)bm(n)] = δ(k − m)δ(bl/Nc − bn/Nc)

where b · c denotes the floor operation, then the pth element of the expectation vector

µ
(1)
1 (n) can be written as

µ
(1)
1,p(n) =

√
P 1

(1)

M2∑
l=M1

h(1)(l)s
(1)
1 (n − L1 + p − l)(s

(1)
1 (n))∗δ(bn − L1 + p − l

N
)c − b n

N
c)

(3.4)

for 0 ≤ p ≤ L1 + L2. P
(1)
j is the fraction of the total power allocated to the jth user.

Let θ(n) denote the L × L correlation matrix, given by

θ(n) ≡ Es[r(n)rH(n)] = H(1)U(1)(n)(H(1))H + IocIL

where

U(1)(n) = Es[u
(1)(n)(u(1)(n))H]

and IL is the L × L identity matrix.

The matrix U(1)(n) is a square matrix of dimension L + M2 − M1, and has

elements

U
(i)
l,m(n) = Es[u

(i)(n − L1 − M2 + l)(u(i)(n − L1 − M2 + m))∗] (3.5)

14



for 0 ≤ l,m ≤ L1 + L2 + M2 − M1 and 0 else. If as assumed above, the user symbol

sequences are independent and identically distributed, the expectation in (3.5) can

be computed as follows

Es[u
(1)(m)u(1)(n)∗] =

K(1)∑
j=0

P
(1)
j s

(1)
j (m)(s

(1)
j (n))∗δ(bm

N
c − b n

N
c) (3.6)

Summarizing the above development, the MMSE equalizer for u
(1)
1 (n) from the ob-

servation r(n) is given by

(c(1)(n)) = (Es{r(n)rH(n)})−1(Es{r(n)u
(1)
1 (n)∗}) = (θ(n))−1µ

(1)
1 (n) (3.7)

From (3.7), we can see that the MMSE chip equalizer is computationally very

complex and depends on the detailed parameters of the transmitted signal, the user

and the base station. Besides, it needs to be computed at chip-rate, which makes

it almost impossible to implement in practice. Hence, it is advisable to define an

average MMSE chip equalizer, which will be substantially less complex and easier to

adapt to varying conditions of the channel.

The Average MMSE Chip Equalizer is defined as

(c(1)(n)) = [E(Es{r(n)rH(n)})]−1[E(Es{r(n)u
(1)
1 (n)∗})] = θ̄

−1
µ̄

(1)
1 (3.8)

By taking the expectations in (3.4) an (3.6), it is straightforward to show that

µ̄
(1)
1 =

√
P 1

1 h(1) (3.9)

where h(1) = [h(1)(−L1), h
(1)(−L1 + 1), . . . h(1)(L2)]

T , which is obtained by zero-

padding the channel upto length L, and θ̄ = IorH
(1)(H(1))H + IocIL.

The average MMSE chip equalizer can be calculated directly from the knowledge

of the channel h(1), from which the channel matrix H(1) can be computed, the sum

powers received from the serving and interfering base station, Ior and Ioc. As a re-

sult, the complexity associated with direct computation of the average MMSE chip

equalizer is not unreasonable.

For obtaining the average MMSE symbol level equalizer, minor changes need to

be carried out. First, let z
(1)
1 (j) denote the input vector to the equalizer corresponding

to the j-th symbol of the desired user. The l-th element of this vector is given by

z
(1)
1 (j) =

N−1∑
m=0

r(jN − L1 + l + m)(s
(1)
1 (jN + m))∗
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where 0 ≤ l ≤ L1 + L2. Using the matrix notation defined in (3.3), vector z
(1)
1 (j) can

be expressed in a compact form as follows

z
(1)
1 (j) = H(1)

N−1∑
m=0

u(1)(jN+m)(s
(1)
1 (jN+m))∗+

N−1∑
m=0

n(jN+m)(s
(1)
1 (jN+m))∗ (3.10)

Let d
(1)
1 (j) denote the MMSE symbol-level equalizer for symbol b

(1)
1 (jN), which

is given by

d
(1)
1 (j) = (Es[z

(1)
1 (j)(z

(1)
1 (j))H])−1Es[z

(1)
1 (j)(b

(1)
1 (jN))]∗ ≡ (τ

(1)
1 (j))−1ν

(1)
1 (j) (3.11)

where τ
(1)
1 (j) and ν

(1)
1 are defined implicitly. The MMSE estimate of the desired

symbol b
(1)
1 (jN) is given by the inner product 〈d(1)

1 (j), z
(1)
1 (j)〉. A time-invariant

average symbol-level equalizer is obtained by performing averaging of the terms in

(3.11) over the user’s spreading sequences. The average symbol-level equalizer d
(1)
1 is

given by

d
(1)
1 = (E[τ 1

(1)(j)])−1E[ν
(1)
1 (j)] = (τ̄

(1)
1 )−1ν̄

(1)
1 (3.12)

The following are the properties of the average symbol-level equalizer. [5]

• The average symbol-level equalizer is the same, within a positive multiplicative

constant, for the random and orthogonal spreading models.

• Analogous to the average chip equalizer, within a positive multiplicative con-

stant, the average symbol-level equalizer is the same for all users transmitted

from the same base station.

• Under both spreading models, the average symbol-level and chip-level equal-

izers are equal, within a positive multiplicative constant. More generally, the

average symbol-level equalizer is the same regardless of the number of chips

combined in the post-despreading implementation.

3.3 Adaptive Implementation

The theoretical model presented for the linear MMSE Equalizer works well for chan-

nels that do not change appreciably over time. However, in most cases, the channel

is time-varying in nature. In such cases, we need to incorporate adaptive equaliza-

tion. Adaptive equalizers are non-linear equalizers that work on standard converging

algorithms. In such equalizers, the output is tracked with reference to the desired

response. The working of such equalizers is mostly iterative in nature.
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CHAPTER 4

The Adaptive MMSE Equalizer

As described in the previous chapters, the linear MMSE equalizer may work well

only for channels that are static in nature. For fast-changing (fading) channels, an

adaptive method needs to be implemented in the working of the equalizer. Figure

4.1 shows the block diagram for such a concept. In adaptive equalizers, the input

is tracked to a desired response, using a feedback system. The error obtained in

estimation after each iteration is fed back to the system, in an attempt to reduce the

error and hence obtain convergence. In this chapter, we describe adaptive equalizers,

based on two important algorithms - Least Mean Squares (LMS) and Recursive Least

Squares (RLS). The theory behind RLS and LMS algorithms and the mathematics

involved, which are explained in the subsequent sections are adopted from [3].

Figure 4.1: Conceptual diagram of the post-despreading implementation of the adap-

tive symbol-level equalizer. [5]



4.1 LMS Adaptive Filters

The LMS algorithm is an important member of the family of stochastic gradient

algorithms. The term ”stochastic gradient” is intended to distinguish the LMS al-

gorithm from the method of steepest descent, which uses a deterministic gradient

in a recursive computation of the Wiener filter for stochastic inputs. An important

feature of the LMS is its simplicity. Moreover, it does not require measurements of

the relevant correlation functions, nor does it require matrix inversion. Hence, it is

memory-efficient. However, the convergence of LMS is often slow compared to the

other standard algorithms. Besides, LMS is susceptible to problems with noise during

periods when the input fails to excite the system. There exist various forms of the

LMS algorithm, as described in [10].

4.1.1 Overview of the LMS Adaptation algorithm

During the LMS filtering process, the desired response d(n) is supplied for processing,

alongside the tap-input vector u(n). Given this input, the transversal filter with

coefficients h(n), produces an output (d̂(n)|u(n)) used as an estimate of the desired

response d(n). Accordingly, we may define an estimation error e(n) as the difference

between the desired response and the actual filter output. We define J(n) = |e(n)|2 =

e(n)e∗(n) as the cost function. With every iteration, the estimates of the tap weights

h(n) are updated, according to the information obtained from the gradient vector,

∇J(n), the differential of the cost function J(n), w.r.t the tap weights. The updating

is done in a direction opposite the gradient. µ is denoted as the step-size parameter,

which actually determines the rate of convergence.

If it were possible to make exact measurements of the gradient vectors ∇J(n) at

each iteration n, and if the step-size parameter is suitably chosen, then the tap-weight

vector computed by using the steepest-descent algorithm would indeed converge to

the Optimum Wiener filter solution. In reality, however, exact measurements of the

gradient vector are not possible, since that would require prior knowledge of both

the correlation matrix R of the tap inputs and the cross-correlation vector p between

the tap inputs and the desired response. Consequently, the gradient vector must

be estimated from the available data when we operate in an unknown environment.

The gradient vector can be written in terms of the correlation matrix R and the

cross-correlation matrix p as

∇J(n) = −2p + 2Rh(n) (4.1)
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Since p and R are not known before hand, it is best to use instantaneous estimates

for R and p and develop an instantaneous estimate of the gradient vector. R̂(n) is the

instantaneous estimate of the correlation matrix and is given by R̂(n) = u(n)uH(n).

Likewise p̂(n) is given by p̂(n) = u(n)d∗(n). These give

∇̂J(n) = −2u(n)d∗(n) + 2u(n)uH(n)ĥ(n) (4.2)

Substituting the estimate of (4.2) for the gradient vector in the steepest descent

algorithm[3], we obtain the recursive relation for updating the tap-weight vector:

ĥ(n + 1) = ĥ(n) + µu(n)[d∗(n) − uH(n)ĥ(n)]∗ (4.3)

4.1.2 LMS algorithm applied to the Equalizer case

Let u(n) be the input vector to the LMS-based equalizer at time n. Correspondingly,

let h(n) = [h(n − L1) . . . h(n) . . . h(n + L2)] be the L equalizer coefficients.

The output of the equalizer for symbol n (after descrambling and despreading) is

given by

op(n) =
n+SF−1∑

m=n

L2∑
k=−L1

u(m − k)h(k)c∗(m) (4.4)

where c(m) is the corresponding scrambling code. The despreading is done over the

all-ones CPICH code (SF = 256). Hence, it is expected to get back 1 + i at the

receiver, which then forms our d(n). Hence, we can define the error-term e(n) as

e(n) = d(n) −
n+SF−1∑

m=n

L2∑
k=−L1

u(m − k)h(k)c∗(m)

Consequently, the gradient vector can be defined as

∇J(n) =
∂

∂h(k)
J(n) = −2 ×

[ m+256∑
SF=m

u(m − k)

]
· e(n) (4.5)

The update equation for the LMS filter (ith iteration) is given by

hi+1(k) = hi(k) + µ

[ m+256∑
SF=m

u(m − k)

]
· e∗(n);−L2 ≤ k ≤ L1 (4.6)

µ is the parameter that actually decides the rate of convergence as well as the

steady state error. Higher the step-size value µ, relatively faster is the convergence,

but the steady state error would also be high, and correspondingly for a low value
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of µ, we have the opposite. Hence, it is required to appropriately choose µ, owing

to a trade-off between the rate of convergence and the steady-state error. Also, for

the stability of the system, 0 ≤ µ ≤ 2
LSmax

, where Smax is the maximum value of the

power spectral density of the tap inputs u(n) and the filter length L is moderate to

large.

4.2 RLS Adaptive Filters

4.2.1 Overview of the RLS algorithm

In recursive implementation of the method of least squares, we start the computation

with prescribed initial conditions and use the information contained in new data

samples to update the old estimates. Thus, the length of observable data can be

varied. We express the cost function to be minimized as

J(n) =
n∑

i=1

β(n, i)|e(i)|2 (4.7)

where β(n, i) is defined as the weighting factor, and e(n) defined as in the LMS case.

The weighting factor β(n, i) lies between 0 and 1. The use of the weighing factor in

general, is intended to ensure that data in the distant past are “forgotten” in order

to afford the possibility of following the statistical variations of the observable data

when the filter operates in a non stationary environment. The weighting factor β(n, i)

is defined in terms of another parameter λ as

β(n, i) = λn−i (4.8)

where λ is a positive constant close to, but less than unity. When λ = 1, we have

the ordinary method of least squares. The inverse of 1 − λ is, roughly speaking, a

measure of the memory of the algorithm. The special case λ = 1 corresponds to

infinite memory.

The LMS algorithm as well as the method of least squares draw problems due to

the fact that they cannot correctly map the input onto the output. To make the

estimation problem “well-posed”, some form of prior information about the input-

output mapping is necessary. This in turn, means that the formulation of the cost

function must be expanded to take prior information into account. We expand the

cost function as the sum of two components as:

J(n) =
n∑

i=1

λn−i|e|2 + δλn|h(n)|2 (4.9)
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• The sum of weighted error squares

n∑
i=1

λn−i|e|2 =
n∑

i=1

λn−i|d(n) − hH(n)u(i)|2,

which is data dependent.

• A regularizing term

δλn|h(n)|2 = δλnhH(n)h(n)

where δ is a positive real number called the regularization parameter. The

regularization parameter is under the designer’s control. It should be set to a

small value for a high prevalent SNR conditions (of the order of 10 dB) and to

a large value for small SNR conditions.

We find that the effect of including the regularizing term δλn|h(n)|2 to a change in

the formulation of the time-averaged correlation matrix R and the cross-correlation

matrix p as well. The modified equation are:

R(n) =
n∑

i=1

λn−iu(i)uH(i) + δλnI (4.10)

where I is the L × L identity matrix. p is written as:

p(n) =
n∑

i=1

λn−iu(i)d∗(i) (4.11)

For obtaining recursive computations of R(n) and p(n), we may write

R(n) = λ

[ n−1∑
i=1

λn−1−iu(i)uH(i) + δλn−1I

]
+ u(n)uH(n), (4.12)

from which we have:

R(n) = λR(n − 1) + u(n)uH(n) (4.13)

Similarly, we may derive the following recursion for updating the cross-correlation

vector between the tap inputs and the desired response.

p(n) = λp(n − 1) + u(n)d∗(n) (4.14)

We now define the The Matrix Inversion Lemma [3] which will help us find the inverse

of the correlation matrix R.
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4.2.1.1 The Matrix Inversion Lemma (MIL)

Let A and B be two positive-definite L × L matrices related by

A = B−1 + CD−1CH,

where D is a positive-definite N × L matrix and C is an L × N matrix. According

to the MIL,

A−1 = B − BC(D + CHBC)−1CHB. (4.15)

We assume that the correlation matrix R(n) is non-singular and make the following

identifications:

A = R(n); B−1 = λR(n − 1); C = u(n); D = 1

Using the above in the MIL, we obtain the recursive equation for the inverse of the

correlation matrix as:

R−1(n) = λ−1R−1(n − 1) − λ−2R−1(n − 1)u(n)uH(n)R−1(n − 1)

1 + λ−1uH(n)R−1(n − 1)u(n)
(4.16)

For convenience of computation, let

P(n) = R−1(n) (4.17)

and

k(n) =
λ−1P(n − 1)u(n)

1 + λ−1uHP(n − 1)u(n)
(4.18)

We may write

P(n) = λ−1P(n − 1) − λ−1k(n)uH(n)P(n − 1) (4.19)

By rearranging (4.18), we obtain

k(n) =

[
λ−1P(n − 1) − λ−1k(n)uH(n)P(n − 1)

]
u(n) (4.20)

Therefore we see that

k(n) = P(n)u(n) = R−1(n)u(n) (4.21)

Next, we need to develop equations for updating the tap weight vectors. As done in

the LMS case, we shall first write, using (4.14) and (4.17)

ĥ(n) = R−1(n)p(n) = λP(n)p(n − 1) + P(n)u(n)d∗(n) (4.22)
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Using (4.19) for the first term only on the right hand side, we have on simplification

ĥ(n) = ĥ(n − 1) − k(n)uH(n)ĥ(n − 1) + P(n)u(n)d∗(n) (4.23)

Finally, using (4.21), we get the desired recursive equation for updating the tap

coefficients.

ĥ(n) = ĥ(n − 1) + k(n)[d∗(n) − uH(n)ĥ(n − 1)] = ĥ(n − 1) + k(n)ξ∗(n) (4.24)

ξ(n) = d(n) − ĥH(n − 1)u(n) is the a priori estimation error. This, in general differs

from the a posteriori estimation error e(n) = d(n) − ĥH(n)u(n).

4.2.2 RLS Algorithm applied to the Equalizer case

We assume the same notation as used earlier for the LMS case. We first initialize the

tap coefficients h, of dimensions L× 1 to the all-zero vector, and the L×L vector P

to δ−1I i.e. P(0) = δ−1I.

For each instant of time n = 1, 2, . . . , we compute the following,

π(n) = P(n − 1)s(n) (4.25)

where

s(n, k) =
n+SF−1∑

m=n

u(m − k)c∗(m);−L2 ≤ k ≤ L1

is a vector of dimensions L × 1, obtained after descrambling and despreading.

k(n) =
π(n)

λ + sH(n)π(n)
(4.26)

ξ(n) = d(n) − ĥH(n − 1)s(n) (4.27)

is the a priori estimation error. Finally, we have

ĥ(n) = ĥ(n − 1) + k(n)ξ∗(n) (4.28)

and

P(n) = λ−1P(n − 1) − λ−1k(n)sH(n)P(n − 1) (4.29)

(4.28) is the RLS update equation and (4.29) is the equation for updating P each

time. It is usually seen that the RLS algorithm has a greater rate of convergence

(typically an order of magnitude faster) compared to the LMS algorithm. However,

this is traded-off with the computational complexity involved in this algorithm. This

kind of robust behaviour is explained by the fact that, in deriving the update formula

for the weight vector of the LMS filter, no assumptions are made on the statistical

characterization of the input data.
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CHAPTER 5

Simulation Results

5.1 Results for the Linear MMSE Equalizer

We first present results for the linear symbol-level MMSE equalizers, introduced in

Chapter 3. The performance of the linear MMSE Equalizer is compared against

the performance of the RAKE filter (which assumes perfect knowledge of channel

coefficients). The results are plotted for different multipath delays and G values. G

is defined to be Ior

Ioc
. First, we consider a single path. Following this, the multipath is

assumed to have 2 paths with equal powers. Finally, we consider the case wherein, the

multipath is assumed to be a 4-path equal-powered one. The length of the equalizer is

assumed to be 14 for each case. The performance of the analytically computed MMSE

equalizer against the RAKE filter is shown in Figure 5.1. Clearly, the performance

of the linear MMSE equalizer surpasses that of the RAKE filter, over the range of

interest.

5.2 Results for the Adaptive MMSE Equalizer

The adaptive MMSE filters (based on RLS and LMS) are first tested on static chan-

nels. For the LMS-based equalizer, we test for the step-size parameter µ varying from

0.002 to 0.2. Correspondingly, for the RLS-based equalizer, forgetting factors(λ) vary-

ing from 0.7 to 0.99 are used. Two values of G, 1 (0 dB) and 10 (10 dB) are considered.

The multipath is assumed to have 4 paths (1 direct path and 3 delayed versions with

delays 1, 2 and 3 symbols respectively). Also, two cases of multipath (with equal

and unequal powers) are considered. In the first case, the channel is represented as

[1
2
, 1

2
, 1

2
, 1

2
]T, while in the second case, the channel is [2

√
2√

15
, 2√

15
,
√

2√
15

, 1√
15

]T. The plots

for the mean squared errors, averaged out after 35 simulations each, (establishing

convergence of these algorithms) are shown in Figures 5.2-5.9.

Finally, we present the simulation results for the fading channel. Here, we work

on only the RLS-based adaptive equalizers, as the LMS-based equalizer was not found

to perform significantly better than the RAKE receiver. The channel is taken to be

[2
√

2√
15

, 2√
15

,
√

2√
15

, 1√
15

]T. After looking at the plots for the static channel case, we choose



Figure 5.1: Comparison of the performances of the RAKE filter and the Equalizer for

different G and multipath parameters.

a suitable value of λ which would enable quick convergence for low to moderate speeds

as well. We choose λ = 0.9. The only parameter that is changed in this case is the

vehicle speed. We work at 3 different speeds - 10, 30 and 50 km/hr. We work at

G = 10dB for both the cases. The plots for the mean-squared error for the three

different cases are shown in Figures 5.10-5.12. In order to show the improvement

in performance of the adaptive RLS equalizer over the RAKE filter, we plot the

histogram of the estimated SNR values for the equalizer and the RAKE filter for

λ = 0.99 and speed = 10 km/hr. The histogram plots are shown in Figure 5.13.
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Figure 5.2: Plot of the mean-squared error for the 4-path case (Unequal power), for

G = 1, using the LMS algorithm.

Figure 5.3: Plot of the mean-squared error for the 4-path case (Unequal power), for

G = 1, using the RLS algorithm.
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Figure 5.4: Plot of the mean-squared error for the 4-path case (Unequal power), for

G = 10, using the LMS algorithm.

Figure 5.5: Plot of the mean-squared error for the 4-path case (Unequal power), for

G = 10, using the RLS algorithm.
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Figure 5.6: Plot of the mean-squared error for the 4-path case (Equal power), for

G = 1, using the LMS algorithm.

Figure 5.7: Plot of the mean-squared error for the 4-path case (Equal power), for

G = 1, using the RLS algorithm.
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Figure 5.8: Plot of the mean-squared error for the 4-path case (Equal power), for

G = 10, using the LMS algorithm.

Figure 5.9: Plot of the mean-squared error for the 4-path case (Equal power), for

G = 10, using the RLS algorithm.
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Figure 5.10: Plot of the mean-squared error for vehicle speed of 10 km/hr, using the

RLS algorithm.

Figure 5.11: Plot of the mean-squared error for vehicle speed of 30 km/hr, using the

RLS algorithm.
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Figure 5.12: Plot of the mean-squared error for vehicle speed of 50 km/hr, using the

RLS algorithm.

Figure 5.13: Histogram plots of the estimated SNR values for the RAKE receiver and

the Adaptive MMSE equalizer at vehicle speed = 10 km/hr and G = 10.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

The MMSE symbol-level equalizer model presented in this report can significantly

improve the performance of the downlink of 3G W-CDMA systems. Also, it is com-

putationally less complex and would be implemented at a higher SIR. It reduces

intra-cell interference, thus automatically restoring orthogonality among the differ-

ent users. The linear MMSE equalizer can suppress interference from other cells by

whitening the interference. The theoretical model of the equalizer clearly exhibits sig-

nificant improvement in performance over the RAKE receiver, considering the case of

the static channel. Even adaptive equalizers, that adapt using the pilot sequence work

well when it comes to stationary channels. For fading channels, the LMS adaptive

filter does not perform adequately as it requires a long period of time to converge.

However, the adaptive filter based on the RLS algorithm provides significant improve-

ment in performance over the RAKE filter even for moderate mobile speeds.

6.2 Future Work

In our project, we worked on the CPICH alone. The equalizer coefficients found

thus, can be used to decode even the data on the HS-PDSCH or the DPCH. Also, we

restricted ourselves to a single-user case. The theory introduced and the equations

derived can be generalized to the multi-user case as well. The equalizer coefficients

would still remain the same, although the computation time and complexity are

increased due to increase in dimensionality. It is the just the spreading code which

changes for different users. We could also work at higher speeds than those used for

the simulations, with the fact that a greater amount of averaging to be done, as the

algorithms would take sufficiently long time to adapt. Also, we could have worked on

other converging algorithms such as normalized LMS or Kalman filtering. Besides,

we could introduce Interleaving and Error Control Coding into the channel model,

which would automatically improve the performance.



Bibliography and References

[1] T. S. Rappaport, Wireless Communications - Principles and Practice, Prentice

Hall, 1991.

[2] J. G. Proakis, Digital Communications, Mc-Graw Hill, 1995.

[3] S. Haykin, Adaptive Filter Theory, Prentice Hall, 1996.

[4] W. C. Jakes, Microwave Mobile Communications, Wiley, 1974.

[5] C. D. Frank, U. Visotsky and U. Madhow, “Adaptive Interference Suppression

for the Downlink of a DS-CDMA System with Long Spreading Sequences”, Proc.

36th Annual Conference on Communication, Control and Computing, Monti-

cello, IL, Sep. 1998.

[6] 3GPP TS 25.101 v 5.7.0: UE radio transmission and reception (FDD), Dec.

2003.

[7] 3GPP TS 25.211 v 5.5.0: Physical channels and mapping of transport channels

onto physical channels (FDD), Sep. 2003.

[8] 3GPP TS 25.213 v 5.4.0: Spreading and modulation (FDD), Sep. 2003.

[9] P. Dent, G. E. Bottomley, T. Croft, “Jakes model for fading channels”, Proc.

IEE, 1993.

[10] W. A. Sethares, “The Least Mean Square Family”, Oct. 1993.

[11] S. U. H. Qureshi, “Adaptive Equalization”, Proc. IEEE, Vol. 73, No. 9, Sep.

1983.

[12] A. Klein, “Data Detection Algorithms Specially Designed for the Downlink of

CDMA Mobile Radio Systems,” Proc. IEEE International Vehicular Technology

Conference, VTC’97, Phoenix, May 1997, pp. 203-207.

[13] C. D. Frank and E. Visotsky, “Adaptive Interference Suppression for Direct-

Sequence CDMA Systems with Long Spreading Codes,” Proc. 36th Annual

Conference on Communication, Control and Computing, Monticello, IL, Sep.

1998.

[14] I. Ghauri and D. T. M. Shock, “Linear Receivers for the DS-CDMA Down-

link Exploiting Orthogonality of Spreading Sequences,” Proc. 32nd Asilomar



Conference on Signals, Systems and Computers, Asilomar, CA, Nov. 1998, pp.

650-654.

[15] G. E. Bottomley, “Optimizing the RAKE Receiver for the CDMA Downlink,”

Proc. IEEE International Vehicular Technology Conference, VTC’93, 1993, pp.

742-745.

[16] P. Komulainen, M. J. Heikkila, J. Lilleberg, “Adaptive Channel Equalization

for CDMA Downlink,” Proc. IEEE 6th International Symposium on Spread-

Spectrum techniques and Applications, ISSSTA 2000, NJ, Sep. 2000, pp. 363-

367.

34


