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Chapter 1

Overview

Voice is the basic mode of communication that conveys the content of speech and

helps to identify the production source. With the growth of technology in the field

of electronics and communications, we have moved from a world of telephones to

an era of mobile technology and the Internet. In the present day, use of mobile

phones/cellular handsets has increased significantly. The set up and applications of

these ingenious gadgets entails the thorough exploitation of the knowledge and the

underlying concepts of voice communications. Hence voice communications forms an

inseparable part of our daily lives.

The widespread use of cellular/wireless sets has significantly increased the use of

communication systems in high-noise environments. Impairments to the generated

speech could occur due to the presence of high background noise or noise picked up in

the channel. This noise pick-up results in degradation of the quality or intelligibility

of speech, thus deteriorating the performance of many existing signal processing algo-

rithms such as those used in speech coding, speech recognition, speaker identification,

channel coding, echo cancellation, etc. Detection of voice segments in the presence of

noise becomes imperative to these systems.

Voice activity detection is the first step in all the above mentioned speech process-

ing techniques. Detected voice segments can be further processed to offer accurate
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results in these systems. However, voice activity detection works well only in en-

vironments where the signal-to-noise ratio(SNR) is high. Since most vocoders and

voice recognition units require high SNR, low SNR automatically degrades their per-

formance. With the development of hands-free and voice-activated cellular phones,

noise reduction techniques are necessary to improve voice quality in noisy environ-

ments. To ameliorate the quality and intelligibility of the detected speech signal,

speech enhancement is carried out.

1.1 The Voice Activity Detector

Voice activity detector(VAD), as the name suggests detects voice activity. It carries

out the process of identifying the boundaries(beginning and end points) of speech and

silence in a conversation. In other words, the VAD finds the beginning and ending

of voice spurts. The VAD works based on some set of rules incorporated in the voice

activity detection algorithms.

1.2 Advantages of VAD

• Detection of voice activity helps to implement noise cancellation algorithms to

specified speech segments only and thus saves the processing time in canceling

noise from speech.

• Identifying and rejecting transmission of noise-only periods helps reduce Inter-

net traffic.

• A reliable VAD detects only the voiced fragments and discards the high fre-

quency noise samples. Hence a great deal of bandwidth reduction is achieved,

while still maintaining the voice quality. Keeping bandwidth low is of prime

importance in voice over packet networks.
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• VAD also allows for multi-data transmission. Since voice activity is present only

during a small part in conversational speech, the silence periods could be used

to transmit additional data, thus improving the bit rate of the channel.

1.3 Applications of VAD

VAD is required in some communication applications such as speech recognition,

speech coding, hands-free telephony, audio conferencing, echo cancellation, etc. It

forms an integral part of transmission Systems today. Voice over IP systems nec-

essarily require the incorporation of a VAD for providing toll grade voice quality.

Specific applications like digital cordless telephone systems, cellular networks and the

Pan-European digital cellular mobile telephone service entail the employment of a

VAD.

As it is well known, a VAD achieves silence compression, which is very important

in both fixed and mobile telecommunication systems. In communication systems

based on variable bit-rate speech coders(eg. in multimedia or VoIP applications),

it represents the most important block, reducing the average bit-rate. In a cellular

radio system using the discontinuous transmission(DTX) mode(eg. GSM or UMTS

systems), a VAD is able to increase the number of users as well as reduce the average

power consumption in portable equipment. The recently proposed multiple access

schemes, such as CDMA and enhanced TDMA for cellular and PCS systems use

some form of VAD.
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1.4 Objectives of this project work

• Study of several methods for VAD proposed in the literature.

• Implementation of some of the VAD algorithms using the software MATLAB.

• Performance studies of the implemented VAD algorithms using standard speech

databases.

• Study of some speech enhancement techniques that employ VAD.

• Software coding of the speech enhancement procedures learnt.

• Application of these coded algorithms to some sample noisy speeches.
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Chapter 2

Voice Activity Detection Algorithms

VAD algorithms take recourse to some form of speech pattern classification to dif-

ferentiate between voice and silence(in general, noisy) periods. They usually extract

features, specific to voice, that are highly unlikely to be found in noisy segments. They

then cut off parts of the speech signal based on a calculated(or assumed) threshold

quantity. The threshold value that these algorithms calculate is based on the features

extracted by them. The adaptiveness of this threshold vector results in reliable and

robust separation of speech(containing voice) and noisy(silent) parts from the original

noisy speech samples.

VADs were first investigated for use on TASI systems. Since then, various types

of VAD algorithms that trade off delay, sensitivity, accuracy and computational cost

have been proposed. They are based on extracted feature vectors, such as short-time

energy levels, timing, pitch, zero-crossings rate, periodicity, cepstrum and various

distance measures. VAD algorithms can implemented in time-domain, frequency-

domain or a combination of both.

2.1 Desirable aspects of VAD algorithms

• A good decision rule : A physical property of speech that can be exploited to

give consistent judgment in classifying segments of the speech into silent ones

or those containing voice.
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• Adaptability to changing background noise : Adapting to non-stationary

background noise improves robustness, especially in wireless telephony where

the user is mobile.

• Low computational complexity : Internet telephony is a real-time appli-

cation. Therefore the complexity of VAD algorithm must be low to suit this

practical application.

• Toll quality voice reproduction : Voice over packet or Voice over IP (VoIP)

systems have to ensure that voice quality does not significantly deteriorate due

to network conditions such as packet-loss and delays. Providing toll grade voice

quality through VoIP systems remains a challenge. A robust VAD must be able

to reproduce toll grade voice quality.

• Saving in bandwidth is to be maximized.

2.2 VAD algorithms implemented :

Amongst several VAD algorithms proposed in literature, the following ones have

been presented in this report.

VAD algorithms - Time domain

1. The Variance-based Detector

2. The Linear Energy-based Detector(LED)

3. The Adaptive Linear Energy-based Detector(ALED)

4. The Zero-Crossings Detector(ZCD)

5. The Least Squares Periodicity Estimator(LSPE)-based Detector
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VAD algorithms - Frequency domain

1. The Adaptive Linear Sub-band Energy-based Detector(ALSED)

2. The Spectral Flatness Detector(SFD)

3. The Cepstral Detector

2.3 VAD implementation

For any kind of VAD, the following basic processing steps are always carried out

sequentially.

1. The input speech samples are first passed through a digital band-pass filter(300-

3400 Hz) to remove the out-of-band components.

2. The speech samples are partitioned into frames, of possibly 10-30 ms duration

with zero padding in the last frame(s), if necessary.

3. For all the algorithms implemented in this report, the input speech is sampled

at 8 kHz and partitioned into 20 ms frames, giving a total of 160 samples per

frame.

4. If the VAD is designed to work in the frequency domain, each frame is windowed

(possibly using a Hamming window) and 2:1(50 percent) overlap is carried out.

VADs implementable in time domain do not require windowing or overlapping

of frames.

5. ’Feature vector’ extraction is carried out from each of the speech frames.

6. A suitable threshold vector is defined based on the calculated values of the

extracted feature for the first few frames.
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7. Decision as to whether the frame contains voice or noise is taken based on this

threshold measure.

8. The frames rendered as ’ACTIVE’ are parts of the input speech containing

speech in them. Noisy frames are entitled as ’INACTIVE’ frames.
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Chapter 3

The Variance-based Detector

3.1 Introduction

The Variance-based Detector[2] is the simplest and one of the robust VAD found in

literature. It is also implemented completely in the time domain. It is based on the

simple postulate that the variance of speech is far higher compared to noise. Also,

white noise has a flat variance while that of speech is non-stationary. The threshold

value to be used is based on this simple variance vector.

3.2 The Variance-based algorithm

• The basic processing steps are carried out on the input speech samples.

• The feature vector used here is the variance of each frame. Hence the variance

of each 20ms non-overlapping frame is calculated.

• It is observed that the variance values for noise is considerably lower compared

to that of speech. Also, these values are stationary compared to that of speech.

The threshold value is completely based on this measurement.

• The calculated cutoff value is the average of all the variances of the first 10

frames (0.2 s). It is assumed that no speech is present at least for this period

of time.
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• Decision Rule:

If σ(fj) ≥ k · threshold, frame is ’ACTIVE’(containing speech).

Else, frame is ’INACTIVE’(noisy).

where,

σ(fj) is the variance calculated for the the jth frame,

k is the scaling factor for allowing a safety margin (usually taken in the range

1-2).

The experimental results for the Variance-based Detector are shown in Figure 3.1.

3.3 Merits of the Variance-based Detector

• It is simple to implement in real-time circuits. All that it entails is a variance

calculator.

• It reliably detects low energy phonemes at considerable SNR values.

3.4 Drawbacks of the Variance-based Detector

• Low SNR causes undue clipping in the input noisy signal.

• At very low SNR values, it makes numerous incorrect decisions, since variances

of speech and noise catch up with each other.
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3.5 Experimental Results

Fig.3.1: Response of the Variance-based VAD to the standard TIMIT

speech.
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Chapter 4

The Linear Energy-based Detector

4.1 Introduction

The LED[2] is a simple and reliable detector. It works completely in the time do-

main. Short-time energy is the parameter on the basis of which frames are classified

as those containing speech or noisy. It is well known that energy of voice is consid-

erably high compared to that of noise and thus suitable filtering of noise from voice

can be carried out. To add robustness to this algorithm, an adaptive threshold is

employed. However, adaptation is carried out only during the silent frames.

4.2 The LED algorithm

• The basic processing steps are carried out on the input speech samples.

• The feature vector used here is the energy of each frame. Hence the net energy

of each 20ms non-overlapping frames is calculated.

• It is observed that the short-time energy values for noise is considerably lower

compared to that of speech. Also, these values are stationary compared to that

of speech. The threshold value is completely based on this measurement.

• Achieving Adaptability:

To achieve robustness, the threshold value assumed must be re-computed during
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every inactive frame. The inactive frames are decided based on the decision

taken by the variance detector. The equation which guards this rule is :

Eth(new) = Eth(old) · (1− p) + Esil · p (4.1)

where,

Eth(new) is the updated value of the threshold,

Eth(old) is the previous energy threshold and

Esil is the energy of the most recent silent/noisy frame.

The reference Eth is updated as a convex combination of the old threshold

and the current noise update. p is chosen considering the impulse response of

Equation 4.1 as a first order filter(0 < p < 1).

The Z-Transform of Equation 4.1 is,

Eth(z) = (1− p) · z−1 · Eth(z) + p · Esil(z) (4.2)

The transfer function may be determined using,

H(z) =
Eth(z)

Esil(z)
=

p

1− (1− p) · z−1
(4.3)

For various values of p, the fall-time is plotted in Figure 4.1. It is observed that

for p = 0.2, the fall-time (95 percent) corresponds to 15 delay units, i.e. 150ms.

In effect, 15 past inactive frames influence the calculation for Eth.

• The initial value of is Eth is the average of energies of the first 10 frames (0.2

s). It is assumed that no speech is present at least for this period of time.

• Decision Rule:

If E(fj) ≥ k · Eth, frame is ’ACTIVE’(containing speech).

Else, frame is ’INACTIVE’(noisy).
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where,

E(fj) is the energy estimate for the the jth frame,

k is the scaling factor for allowing a safety margin (usually taken in the range

1-2).

Fig.4.1: Fall-time for different values of p.

The experimental results for the LED are shown in Figure 4.2.
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4.3 Merits of the LED

• Implementation in real-time is straightforward.

• It gives an acceptable quality of speech after compression.

4.4 Drawbacks of the LED

• This algorithm cannot give a good speech quality under varying background

noise conditions. This is because the threshold is unable to keep pace with

the rapidly varying background noise. Undue clippings, hence result at the

beginning and ending of speech bursts.

• Non-plosive phonemes(utterances characterized by the lack of vibration of the

vocal cords) like ’fish’ and ’catch’ are clipped completely. This is because the

algorithm is exclusively based on energy calculations.

• Low SNR deteriorates the performance drastically.
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4.5 Experimental Results

Fig.4.2: Response of the LED to the standard TIMIT speech.
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Chapter 5

The Adaptive Linear Energy-based

Detector

5.1 Introduction

The ALED[2] is another energy based detector. It also works completely in the

time domain. Short-time energy is the parameter on the basis of which frames are

classified as those containing speech or noisy. It works very similar to LED but for

some enhanced adaptiveness. The sluggishness of LED is a consequence of p being

insensitive to the noise statistics. Adaptability of p to the varying background noise

makes the algorithm all the more hardy.

5.2 The ALED algorithm

• The basic processing steps are carried out on the input speech samples.

• The feature vector used here is the energy of each frame. Hence the net energy

of each 20ms non-overlapping frames was calculated.

• It is observed that the short-time energy values for noise is considerably lower

compared to that of speech. Also, these values are stationary compared to that

of speech. The threshold value is completely based on this measurement.
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• Achieving Adaptability:

To achieve robustness, the threshold value assumed must be re-computed during

every inactive frame. The inactive frames are decided based on the decision

taken by the variance detector. The equation which guards this rule is :

Eth(new) = Eth(old) · (1− p) + Esil · p (5.1)

where,

Eth(new) is the updated value of the threshold,

Eth(old) is the previous energy threshold and

Esil is the energy of the most recent silent/noisy frame.

The reference Eth is updated as a convex combination of the old threshold and

the current noise update. The value of P is varied as shown shortly.

• The initial value of Eth is the average of energies of the first 10 frames (0.2 s).

It is assumed that no speech is present at least for this period of time.

• Varying p :

A change in background noise is reckoned by comparing the variance of the

present noisy frame with that of the previous one. The speech buffer contains

the variance of the previous silent(noisy) frame denoted by σold. Let the variance

of the latest noisy frame be σnew. A profound adaptation is achieved by varying

p as shown in Table 5.1.

The coefficients of the convex combination Equation 5.1 now depend on the

variance of the energies of inactive frames present in the buffer. We are able

to make the otherwise languid Eth respond faster to sudden changes in the

background noise. However, detection of active frames still remains energy-

based.
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Calculated σnew

σold
p

σnew

σold
≥ 1.25 0.25

1.25 ≥ σnew

σold
≥ 1.10 0.20

1.10 ≥ σnew

σold
≥ 1.00 0.15

1.00 ≤ σnew

σold
0.10

Table 5.1: Value of p dependent on σnew

σold

• Decision Rule:

If E(fj) ≥ k · Eth, frame is ’ACTIVE’(containing speech).

Else, frame is ’INACTIVE’(noisy).

where,

E(fj) is the energy estimate for the the jth frame,

k is the scaling factor for allowing a safety margin (usually taken in the range

1-2).

The experimental results for the ALED are shown in Figure 5.1.
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5.3 Merits of the ALED

• Implementation in real-time is straightforward.

• It gives an acceptable quality of speech after compression.

• This algorithm can give a good speech quality even under varying background

noise conditions. This is because the threshold is able to keep pace with the

rapidly varying background noise.

5.4 Drawbacks of the ALED

• Non-plosive phonemes like ’thief’ and ’flower’ are still found to be completely

clipped as in LED.

• Low SNR deteriorates the performance drastically as in LED.
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5.5 Experimental Results

Fig.5.1: Response of the ALED to the standard TIMIT speech.
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Chapter 6

The Zero Crossing Detector

6.1 Introduction

The ZCD[2] is also known as the Weak Fricatives Detector. It is implemented com-

pletely in the time domain. LED and ALED are completely energy based. Low energy

phonemes are silenced completely. It is observed that high energy voiced segments

are always detected by the VAD algorithms even under severe noisy conditions, while

low energy frames are completely silenced. This detector overcomes this shortcoming

of the energy based algorithms.

Zero-crossings is the measure of no. of times in a frame, the speech passes through

zero amplitude. This algorithm is based on the fact that the zero-crossing rate of noise

is considerably high compared to that of speech. Also, the no. of zero crossings for

speech lies within a fixed range, whereas that for noise is random and unpredictable.

Hence the threshold assumed is based on the no. of zero crossings.

6.2 The ZCD algorithm

• The basic processing steps are carried out on the input speech samples.

• The feature vector used here is the no. of zero-crossings per frame. Hence the

no.of zero-crossings for each 20ms non-overlapping frames is calculated.
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• It is observed that the no. of zero crossings for noise is considerably higher

compared to that of speech. The threshold value is completely based on this

measurement.

• The calculated threshold value is the average of all the zero crossings of the first

10 frames (0.2 s). It is assumed that no speech is present at least for this period

of time.

• Decision Rule:

If Nzcs(fj) ≤ threshold, frame is ’ACTIVE’(containing speech).

Else, frame is ’INACTIVE’(noisy).

where,

Nzcs(fj) is the No. of zero crossings in the jth frame.

The experimental results for the ZCD are shown in Figure 6.1.

6.3 Merits of the ZCD

• It is simple to implement in real-time circuits. All that it requires is a zero-

crossing counter.

• It reliably detects even low energy phonemes that were otherwise silenced by

the simple energy or variance based techniques.

6.4 Drawbacks of the ZCD

• Low SNR causes undue clipping in the input noisy signal.

• It often makes incorrect decisions as noisy frames may contain the same no. of

zero crossings as the speech frames or vice versa.
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6.5 Experimental Results

Fig.6.1: Response of the ZCD to the standard TIMIT speech.
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Chapter 7

The Least Square Periodicity

Estimator-based VAD

7.1 Introduction

This LSPE-based VAD[3] uses a periodicity measure to locate the voiced sections

of speech. It is implemented completely in the time domain. This approach greatly

reduces the probability of triggering on either white or impulsive noise, whether sta-

tionary or non-stationary, in very low SNR. However, the major difficulty in designing

such a VAD, based on periodicity is its sensitivity to any periodic signal, which may

well be interference or a background noise. Great care must be taken to stop false trig-

gering on these signals. It is well known that the periodicity of speech is far higher

than that of noise. The threshold vector is based on ’The normalized periodicity

measure’.

7.2 The normalized periodicity measure

Let s(i) be the input signal. s(i) can be represented as:

s(i) = s0(i) + n(i) (7.1)

where,

s0(i) is the periodic component of the input signal.
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n(i) is the non-periodic component of the input signal.

If P0 is assumed as its period, we have

s0(i) = s0(i + kP0) for any integer k.

Let P̂0 be our estimate for P0.

The estimate for the periodic component of the signal ŝ0(i) is obtained from P̂0 as

follows.

ŝ0(i) =
K0∑
h=0

s(i + hP̂0)

K0

(7.2)

1 ≤ i ≤ P̂0 , Pmin ≤ P̂0 ≤ Pmax

where,

Pmin and Pmax are the minimum and maximum number of samples in a pitch period,

and K0 = [(N − i)/P̂0] + 1 is the number of periods of ŝ0(i) in the analysis frame.

The least squares method minimizes the error given by
N∑

i=1
[s(i)− ŝ0(i)]

2 over each

analysis frame. However, this method is biased towards large values of P̂0. To over-

come this bias, we use the normalized periodicity measure or estimate. The normal-

ized periodicity measure R1(P̂0) is defined as follows.

R1(P̂0) =
I0(P̂0)− I1(P̂0)
N∑

i=1
s2(i)− I1(P̂0)

(7.3)

where,

I1(P̂0) =
P̂0∑
i=1

K0∑
h=0

s(i + hP̂0)
2

K0

(7.4)

and

I0(P̂0) =
P̂0∑
i=1

[
K0∑
h=0

s(i + hP̂0)]
2

K0

(7.5)
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7.3 LSPE processing

• The basic processing steps are carried out on the input speech samples. Also,

preprocessing is carried out on the samples. A preprocessor is employed to

remove any kind of interference in the signal. It usually removes the constant-

frequency data and tones.

• For each 20 ms frame, R1(P̂0) is computed for the values of P̂0 between Pmin =

11 and Pmax = 56. The maximum value of R1(P̂0) obtained is the periodicity

of the frame.

• Periodicity of voice is far higher compared to that of noise. The threshold value

is completely based on this measurement.

• The calculated threshold value is the average of the periodicities of the first 10

frames (0.2 s). Speech is assumed to be absent during this period.

• Decision rule:

If P̂ (fj) ≥ threshold, frame is ’ACTIVE’(containing speech).

Else, frame is ’INACTIVE’(noisy).

where,

P̂ (fj) is the periodicity estimate of the jth frame.

The experimental results for the LSPE-based VAD are shown in Figure 7.1.

7.4 Merits of the LSPE-based VAD

• It detects reliably even at 5 dB SNR, provided that the preprocessor works

robustly.
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• It is very easily implementable in real-time circuits. The hardware required for

this would consist of only summers and multipliers.

7.5 Drawbacks of the LSPE-based VAD

• The price paid for reliable detection is the slight loss of sensitivity in the detected

samples.

• In cases where the preprocessor is unable to eliminate the interferences to the

signal, numerous false triggerings take place.
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7.6 Experimental Results

Fig.7.1: Response of the LSPE-based VAD to the standard TIMIT speech.
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Chapter 8

The Adaptive Linear Sub-band

Energy-based Detector

8.1 Introduction

The ALSED[2] is a frequency domain algorithm. It takes its decisions based on

energy computations of the signal frame with a reference energy threshold in the

frequency domain. The threshold is completely based on this energy counterpart in

the frequency domain. Most of the energy in the voice signal tends to be in the lowest

frequency band i.e. 0-1kHz. Selective threshold comparison in the lowest band alone

gives good decisions.

8.2 The ALSED algorithm

• The basic processing steps are carried out on the input speech samples. Since

it is implemented in the frequency domain, the frames are windowed with the

Hamming window and overlapped in the ratio 2:1(50 percent).

• The spectrum obtained is divided into four bands of width 1kHz, i.e. the bands

are 0-1kHz, 1-2kHz, 2-3kHz, 3-4kHz. The energy for each band is calculated as

En(fj) = F 2
n(fj) for the nth band (8.1)
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where, Fn(fj) is the discrete cosine transform(DCT) of the jth frame of the nth

sub-band of the speech signal. DCT was used instead of DFT(discrete Fourier

transform) for the following reasons.

– It is computationally less complex as compared to DFT.

– It is a real-valued transform.

• Achieving Robustness:

To achieve robustness, the thresholds are computed recursively for each sub-

band as

Enew(threshold)(fn) = (1− p) · Eold(threshold)(fn) + p · E(new)(fn) (8.2)

E(new)(fn) is the energy of the most recent silent frame, Eold(threshold)(fn) and

Enew(threshold)(fn) are the previous and updated values of the threshold vector

for the nth sub-band.

For achieving adaptability to the varying background noise, p is varied as shown

in Table 5.1 for each sub-band.

• The condition for presence of speech in each band is

En(f) ≥ En(threshold)(f) (8.3)

where,

En(threshold)(f) denotes the threshold assumed for the nth sub-band. Usually,

the calculated cutoff value is the average of all the spectral variances of the first

10 frames (0.2 s). It is assumed that no speech is present at least for this period

of time.
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• Decision Rule: A frame is declared to be ACTIVE(containing speech) if the

lowest band(0-1kHz) is ACTIVE and any two of the remaining three bands are

ACTIVE. Otherwise, it is termed as INACTIVE(noisy).

The experimental results for the ALSED are shown in Figure 8.1.

8.3 Merits of the ALSED

• It gives an acceptable quality of speech after compression.

• Selective threshold comparison in the lowest sub-band alone provides good de-

cisions.

8.4 Drawbacks of the ALSED

• Low SNR causes undue clipping in the input noisy signal.

• Low energy phonemes can’t be detected even at considerable SNR values.
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8.5 Experimental Results

Fig.8.1: Response of the ALSED to the standard TIMIT speech.
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Chapter 9

The Spectral Flatness Detector

9.1 Introduction

The SFD[2] is a reliable detector implemented completely in the frequency domain.

It works robustly even at low SNR values. White noise has a flat spectrum while

voiced signals have non-stationary spectrum with more spectral content in the lower

frequencies. Thus high variance implies speech content while low variance implies

noise alone. The threshold assumed is based on the spectral variance of the signal

samples.

9.2 The SFD algorithm

• The basic processing steps are carried out on the input speech samples. Since

it is implemented in the frequency domain, the frames are windowed with the

Hamming window and overlapped in the ratio 2:1(50 percent).

• The feature vector used here is the spectral variance of each frame. Hence

the spectral variance of each 20ms non-overlapping frames is calculated. The

spectral variance of the jth frame is given by :

σ(fj) = V AR[X(f)]; (9.1)

where,

X(f) = DCT (x(n)) ; DCT stands for discrete cosine transform.
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• It is observed that the spectral variance values for noise is considerably lower

compared to that of speech. Also, these values are flatter compared to that of

speech. The threshold value is completely based on this measurement.

• The calculated cutoff value is the average of all the spectral variances of the

first 10 frames (0.2 s). It is assumed that no speech is present at least for this

period of time.

• Decision Rule:

If σ(fj) ≥ k · threshold, frame is ’ACTIVE’(containing speech).

Else, frame is ’INACTIVE’(noisy).

where,

σ(fj) is the spectral variance calculated for the the jth frame,

k is the scaling factor for allowing a safety margin (usually taken in the range

1-2).

The experimental results for the SFD are shown in Figure 9.1.

9.3 Merits of the SFD

• It is simple to implement in real-time. All that it entails is a variance calculator.

• It reliably detects low energy phonemes at considerable SNR values, as it makes

use of a statistical approach to the energy distribution in the spectra.

9.4 Drawbacks of the SFD

• Low SNR causes undue clipping in the input noisy signal.

41



• At very low SNR values, it makes numerous incorrect decisions, since variances

of speech and noise catch up with each other.

9.5 Experimental Results

Fig.9.1: Response of the SFD to the standard TIMIT speech.
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Chapter 10

The Cepstral Detector

10.1 Introduction

The Cepstral Detector[4] is based on the cepstral features of speech signals. It is a

frequency domain technique. It is seen that the algorithms based on simple feature

vectors like energy, variance and zero-crossing fail to produce effective results. The

cepstral algorithm overcomes this shortcoming of other algorithms. It is suitable for

VAD applications because of the fact that variance of cepstrum for voice is far greater

than voice. In addition, unlike other techniques, cepstral coefficient values don’t

depend on absolute amplitude levels of a signal. Also, cepstral coefficients represent

the frequencies present in speech clearly and effectively. Therefore, ambiguities and

errors in feature vector calculations are minimized. Hence, this is a widely used

technique.

10.2 Cepstrum:

For a real signal X(t), complex cepstrum Xc(n) is given as follows,

Xc(n) =
1

2π

π∫
−π

log |X(ω)|ejnωdω (10.1)

where,

X(ω) is the Fourier transform of the speech signal.
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i.e. complex cepstrum = IFT (log |FT (X)|) where,

X is the speech signal,

FT and IFT denote the Fourier and inverse Fourier transforms.

For a sequence x(n), discrete cepstrum XN(n) is defined as :

XN(n) =
1

N

∑
n

Xl(k)e
j2πn

N (10.2)

where,

Xl(k) is the logarithm of the modulus of the Fourier transform X(k) of the speech

signal

i.e. Xl(k) = log |X(k)|.

Time index n in cepstral domain is called ’quefrency’.

10.3 Properties of cepstrum:

• For a sequence X(n) with rational Z-transform, complex cepstrum decays as

fast as 1
mod(n)

, where n is the quefrency value. This shows that cepstrum values

concentrate at n = 0.

• For a sequence consisting of train of impulses of constant period, complex cep-

strum consists of an impulse train of a constant period equal to the pitch period.

• For minimum phase sequences obtained by linear prediction, a real cepstrum

can be sufficient for analysis purpose.

10.4 Linear prediction analysis:

The basic idea behind linear prediction analysis is that each speech sample can be

represented as a linear combination of the past speech sample values. Such repre-
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sentation leads to all-pole model of short-time speech spectrum. Linear prediction

process is given as follows.

x(n) = a1x(n− 1) + a2x(n− 2) + a3x(n− 3) + ....... + amx(n−m) (10.3)

Equivalently,

x(n) =
m∑

k=1

akx(n− k) (10.4)

where,

a1, a2, .....am are defined as the m linear predictor coefficients(LPC) of the speech

signal.

Linear prediction analysis is a modeling technique that can be effective for speech

signals. It gives good computational speed and accuracy. The limitation of this

technique is that it does not model zeros in a system, which are actually present

in vocal tract transfer function. This leads to approximations in the use of this

technique. Conversion of linear prediction coefficients to cepstral coefficients, however,

ameliorates the approximations assumed.

10.5 Conversion of linear prediction to cepstral coefficients

LPC are converted to cepstral coefficients by the following equation.

cn = ln +
m∑

k=1

(1− k

n
) · lk · cn−k (10.5)

where,

ln represents the nth LPC and

cn is the nth cepstral coefficient.
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Major advantages of this method are:

• All-pole estimation is less affected by the effect of high pitch aliasing, due to

reduction in waveform periodicity.

• Zero estimation can be performed, which is missed in all-pole modeling of

speech. This reduces approximations to vocal tract response in a speech pro-

duction system.

10.6 The Cepstral algorithm

• The basic processing steps are carried out on the input speech samples. Since

this is a frequency domain algorithm, each frame is windowed with a Hamming

window and 2:1(50 percent) overlap is carried out.

• The feature vector used here is the variance of the cepstral coefficients of each

frame. LPC are first calculated and converted to cepstral coefficients. About

twelve coefficients are sufficient as they can represent the speech effectively.

Cepstral variance, which is the variance of the cepstral coefficients is calculated

for each frame.

• It is observed that the cepstral variance for noise is considerably higher com-

pared to that of speech. The threshold value is completely based on this mea-

surement.

• The calculated threshold value is the average of the cepstral variances of the

first 10 frames(0.2 s). It is assumed that no speech is present at least for this

period of time.

• Decision Rule:

If Cepvar(fj) ≥ threshold, frame is ’ACTIVE’(containing speech).

46



Else, frame is ’INACTIVE’(noisy).

where,

Cepvar(fj) is the cepstral variance for the jth frame.

The experimental results for the Cepstral Detector are shown in Figure 10.1.

10.7 Merits of the Cepstral Detector

• This method is advantageous as cepstra can effectively model the vocal tracts.

Start of voice patches is accurately detected in most cases.

• It can detect accurately even in the presence of non-stationary noise.

10.8 Drawbacks of the Cepstral Detector

• Low SNR leads to numerous false detections.

• Also, excessive fricatives in a sentence affect VAD results.
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10.9 Experimental Results

Fig.10.1: Response of the Cepstral VAD to the standard TIMIT speech.
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Chapter 11

Comparison of the VAD Algorithms

The VAD algorithms discussed were put into testing using two standard databases:

1. The TIMIT speech database[9]

2. The CALLBASE digit database[10]

The test templates varied in loudness, speech continuity, content, accent and speed.

Both male and female recordings were used for testing. Testing was carried out

under SNR conditions varying from 10 dB all the way down to -5 dB. Noise added

was Additive White Gaussian(AWGN) in nature. All the testing procedures were

carried out in MATLAB environment.

Figure 11.1 and Figure 11.2 represent the performance of the VADs under different

SNR conditions for the two databases.

The performance of the algorithms was studied on the basis of the percentage of

correctly detected samples.

11.1 Results of the project work on VAD

• Almost all the VADs worked well even at 10 dB SNR. Below this level, their

performance deteriorated.

• Faithful detections were observed when the length of the words were short. As

the sentence length increased, the performance deteriorated.
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• As the SNR decreased, performance went worse. Errors such as missing of

voiced parts and late detection of next voiced patches were seen.

• It was observed that the value of threshold assumed was extremely critical for

the performance of the VAD. Adaptation of threshold gave more faithful results.

• As seen from the charts, the Variance-based Detector and the SFD performed

outstandingly. Ironically, the simplest algorithm based on variance performed

the best.

Fig.11.1: Comparison of the VADs for the TIMIT speech database.
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Fig.11.2: Comparison of the VADs for the CALLBASE digit database.
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Chapter 12

Other VAD Algorithms

Several other VAD algorithms have been proposed in literature. Some of them are:

• VAD working on the fusion of two or more basic VADs.

• VAD based on the Viterbi algorithm.

• VAD using Bayesian adaptation with conjugate normal distributions.

• VAD based on a certain statistical model.

• VAD working on the principle of a hidden Markov model.

• VAD based on the higher-order statistics(HOS) of speech.

• VAD by tracking power envelope dynamics.

• VAD based on the perpetual wavelet packet transform.

• VAD working on the principle of CAPDM architecture.

• VAD based on time delay estimation and fuzzy activity classification.

Some well-known VADs used in practice these days are:

The GSM VAD, The TOS VAD, The IGSM VAD, The EVRC VAD, The ITU-T

VAD, The ETSI VAD, G.729 and The AMR VAD.

52



Chapter 13

Noise Reduction Techniques

In many speech processing techniques, speech has to be processed in the presence of

undesirable background noise. Noise reduction becomes imperative to improve noise

quality and intelligibility. The purpose of many speech enhancement algorithms is to

reduce background noise, improve speech quality, or suppress undesired interference.

Several speech enhancement algorithms depend on a VAD to facilitate the estimation

of the characteristics of noise.

There are three general classes of speech enhancement techniques[8]: subtraction

of interference, suppression of harmonic frequencies and re-synthesis using vocoders.

The first class of techniques suppresses noise by subtracting a noise spectrum. The

second type of speech enhancement is based on the periodicity if noise. These methods

employ fundamental frequency tracking using adaptive comb filtering of the harmonic

noise. The third class of techniques is based on speech modeling using iterative

methods. These systems focus on estimating model parameters that characterize the

speech signal, followed by re-synthesis of the noise-free signal. They require a prior

knowledge of noise and speech statistics and generally results in iterative enhancement

schemes.

Noise subtraction algorithms can also be partitioned depending on whether a single-

channel or dual-channel(or multiple-channel) approach is used.
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Figure 13.1 shows the block diagram of a general speech enhancement algorithm

employing a VAD.

Fig.13.1: Block diagram of a general speech enhancement algorithm.

In the following chapters, two speech enhancement algorithms are presented. They

are:

1. Speech Enhancement using a Minimum Mean Square Error Log-Spectral Am-

plitude Estimator(MMSE-LSAE)

2. Speech Enhancement by Adaptive Wavelet Packet
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Chapter 14

Speech Enhancement using a

MMSE-LSAE

14.1 Introduction

This algorithm[5] capitalizes on the major importance of the short-time spectral

amplitude(STSA) of the speech signal in its perception, and utilizes a minimum mean-

square error(MMSE) STSA estimator for enhancing the noisy speech. It is well known

that a distortion measure, which is based on the mean-square error of the log-spectra is

more suitable for speech processing. Such a distortion measure is therefore extensively

used for speech analysis and recognition. For this reason, it is of great interest to

examine the STSA estimator, which minimizes the mean square error of the log

spectra in enhancing speech.

14.2 The MMSE-LSAE

Let x(t) denote the speech signal and n(t), the noise process. Let the analysis frame

be from 0 ≤ t ≤ T .

The noisy speech y(t) = x(t) + n(t), 0 ≤ t ≤ T .

The Fourier expansion coefficients of the speech process, as well as of the noise

process, are modeled as statistically independent Gaussian random variables. This
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model utilizes asymptotic statistical properties(as T → ∞) of spectral components.

In particular, the Gaussian model is motivated by the central limit theorem and

the statistical independence assumption is motivated by the fact that the correlation

between the spectral components reduce as the analysis interval length increases.

Let Xk = Ake
jαk , Nk and Yk = Rke

jϑk denote the kth Fourier expansion coefficient

of the speech signal, the noise process and the noisy observations, respectively in the

analysis interval[0,T]. According to the formulation of the estimation problem, we are

looking for the estimator Âk, which minimizes :

E[(log Ak − log Âk)
2] (14.1)

given the noisy observations[y(t),0 ≤ t ≤ T ]. This estimator is easily shown to be

Âk = exp[E(ln Ak|y(t))], 0 ≤ t ≤ T (14.2)

Note that the estimator(Equation 14.2) results also if we choose to minimize the

mean-square of the log power spectra given by

E[(log A2
k − log Ã2

k)
2] (14.3)

where Ã2
k denotes the estimator of A2

k, and use

Âk =
√

Ã2
k (14.4)

After rigorous mathematical calculations, it can be shown that

Âk =
ξk

1 + ξk

exp[
1

2

∞∫
vk

e−t

t
] ·Rk (14.5)

which is the MMSE LOG-STSA estimate for Ak.

where,
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Rk denotes the Fourier transform of the noisy signal,

ξk is the priori SNR,

vk is defined as

vk =
ξk

1 + ξk

λk (14.6)

where,
1

λk

=
1

λx(k)
+

1

λn(k)
(14.7)

λx(k) and λn(k), denoting the variances of the kth spectral component of the speech

signal and noise.

The estimate values of λx(k) and λn(k) are found with the help of a reliable VAD.

Since the VAD detects the voice-only segments, the rest denotes noise. The noise-

only component of speech is got by subtracting the detected speech from the original

speech. Hence the variance of noise could be found out. By using the variance of

noise along with the correlated value between noise and speech, the variance of speech

is estimated.

14.3 The denoising process

• The input speech samples are partitioned into 20ms frames.

• Each frame is windowed(Hamming) and 50 percent overlapping is carried out.

It is then transformed into the spectral domain.

• The value of vk is estimated using the MMSE-LOG estimator as described in

the previous section for each frame.

• The estimate Âk is calculated using the Equation 14.5.

• The enhanced speech is constructed by taking the inverse transform of the

estimated coefficients and using the principle of overlap-add on each window.
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14.4 Performance Evaluation

The algorithm incorporating the method of enhancement using MMSE-LSAE was

tested using the TIMIT speech file. The results are shown in Figure 14.1. The clean

speech(in blue) refers to the TIMIT speech samples. The noisy samples(in red) are

obtained when noise(AWGN) is added to the clean samples. The enhanced samples(in

black) are shown at the bottom.

Fig.14.1: Experimental Results for the TIMIT speech.
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Chapter 15

Speech Enhancement by Adaptive

Wavelet Packet

15.1 Introduction

Wavelet transform has been used intensively as a powerful tool for noise reduc-

tion in several speech algorithms[7]. But each algorithm incorporates the method of

noise estimation in a different way. This algorithm estimates noise based on spectral

entropy using histogram of intensity. Also, to alleviate time-frequency discontinu-

ities, it employs a modified hard-thresholding method, based on the µ-law logarithm

for enhancing speech. This algorithm is implementable, not only in the presence of

non-stationary noise, but also in situations involving colored noise.

15.2 Denoising by wavelet thresholding

The conventional wavelet based denoising algorithm can be summarized as follows.

Let s denote clean speech with the finite length N and x the corrupted speech by

white Gaussian noise n with variance σ2. We have,

x = s + n (15.1)

If W denotes a wavelet transform matrix, Equation 15.1 in the wavelet domain can

be given by,

X = S + N (15.2)
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where,

X = Wx, S = Ws and N = Wn.

Let Ŝ be an estimated speech of S, based on the noisy observation X in the wavelet

domain. The speech Ŝ can be estimated by

Ŝ = THR(X, T ) (15.3)

where, THR(; ) denotes a thresholding function and T a threshold value.

Thresholding can be performed as a hard one or as a soft one, defined as follows:

THRh(X, T ) = X, |X| > T,

0, |X| ≤ T. (15.4)

THRs(X, T ) = sgn(X)(|X| − T ), |X| > T,

0, |X| ≤ T. (15.5)

A universal threshold T for the discrete wavelet packet transform case is

T = σ̂k

√
2 log(N log2(N) (15.6)

where,

σ̂k is the noise level for the kth node and N , the sample size(Here, node refers to each

sub-band, when the wavelet-tree decomposition of the noisy signal is carried out).

15.3 Noise estimation based on spectral entropy using histogram of in-

tensity

Generally, median-absolute-deviation(MAD) based noise level estimation is adopted

for wavelet thresholding. This method has an assumption that the noise has Gaussian
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distribution. However, this is not always valid in practice. So an estimation based on

spectral entropy is employed, which is as follows[6].

1. Estimate spectral pdf through histogram of wavelet packet coefficients for each

node. Histogram is composed of B bins.

2. Calculate the normalized spectral entropy.

Entropy(n) = −
B∑

b=1

P · logB(P ) (15.7)

with,

n = 1,2,...No. of best nodes

P = No. of Wavelet Packet Coefficients ck in bin b and node k
Node size in adapted wavelet packet tree

3. Estimate spectral magnitude intensity by histogram and standard deviation of

noise for node dependent wavelet thresholding.

4. Define an auxiliary threshold α.

α(n) = Entropy(n) · (node size) · β (15.8)

where the range of β is from 0.7 to 0.9. It is usually taken as 0.8.

5. Finally, estimate the standard deviation of noise for node-dependent wavelet

thresholding.

σ̂k = [No. of bins in node k bigger than α(n)] · bin width (15.9)

6. One of the major problems of hard/soft thresholding is time-frequency discon-

tinuities. This leads to annoying artifacts and further degradation of output

speech. To resolve this problem, µ-law algorithm is adopted as a non-linear
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function.

THRµ−law(X, T ) = X, |X| > T,

T · ( 1

µ
[(1 + µ|

X
T
|)− 1] · sqn(x)), |X| ≤ T. (15.10)

µ is usually taken to be 256. T is as defined by Equation 15.6.

15.4 The denoising process

• The input speech samples are partitioned into 20ms frames.

• Each frame is decomposed into a tree structure(with 3 nodes) and the wavelet

packet coefficients for each node of the tree are calculated.

• Noise estimation is carried out as discussed in Section 15.3. The threshold is

calculated for each node by using Equation 15.6.

• The enhanced speech samples are obtained by using the µ-law thresholding as

given by Equation 15.10.
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15.5 Performance Evaluation

The algorithm incorporating the method of enhancement using adaptive wavelet

packet was tested using the TIMIT speech file. The results are shown in Figure 15.1.

The clean speech(in blue) refers to the TIMIT speech samples. The noisy samples(in

red) are obtained when noise(AWGN) is added to the clean samples. The enhanced

samples(in black) are shown at the bottom.

Fig.15.1: Experimental Results for the TIMIT speech.

63



References and Bibliography.

1. S. Gokhun Tanyer and Hamza Ozer, ”VAD in Non-stationary Noise.”, IEEE

Transactions on Speech and Audio Processing, July 2002, Vol.8, No. 4, pp.

478-482.

2. A. Sangwan, Chiranth M. C, R. Shah, V. Gaurav, R. V. Prasad and H. S.

Jamadagni, ”Comparison of VAD Algorithms for VoIP.”, Proceedings of the

Seventh International Symposium on Communications and Computers, ISCC-

2002, pp. 530-535.

3. R. Tucker, ”VAD using a Periodicity Measure.”, IEE Proceedings-I,Vol. 139,

No. 4, Aug. 1992, pp. 377-380.

4. J. A. Haigh and J. S. Mason, ”Robust VAD using Cepstral Features.”, IEEE

TEN-CON, 1993, pp. 321-324.

5. Y. Ephraim and D. Malah, ”Speech Enhancement Using a Minimum Mean-

Square Error Log-Spectral Amplitude Estimator.”, IEEE Trans. on Acoustics,

Speech and Signal Processing(ASSP), Vol. 33, No. 2, Apr. 1985, pp. 443-445.

6. S. Chang, Y. Kwon, S. Yang and I. Kim, ”Speech Enhancement for Non-

Stationary Environment By Adaptive Wavelet Packet.”, Proceedings of the

IEEE Conference on ASSP(ICASSP), 2002, Vol. 1, pp. 561-564.

7. I. M. Johnstone and B. W. Silverman, ”Wavelet Threshold Estimators for Data

with Correlated Noise.”, J.Roy. Statistics, Soc. B, 1997, Vol. 59, pp. 319-351.

8. A. M. Kondoz, ”Digital Speech.”, WILEY Publications, Ch. 10, pp. 337-341.

9. TIMIT Acoustic Phonetic Continuous Speech Corpus, http://www.timit.com.

10. Australian English Telephone Digit Database, http://www.callbase.com.

64


